Рассматривается задача о колебаниях полубесконечной вязкоупругой пластины. Вязкость льда моделируется с использованием модели Кельвина-Фойгта вязкоупругого материала. Колебания вызваны осцилляциями внешней нагрузки, расположенной на свободной поверхности вблизи края пластины. На другом краю свободной поверхности находится непроницаемая стенка. Для решения задачи используется подход, разделяющий ее на две подзадачи: нахождение потенциалов скорости течения жидкости под пластиной и под свободной поверхностью. Потенциал под пластиной определяется путем разложения на вертикальные моды. Для использования вертикальных мод необходимо вычислять волновые числа дисперсионного соотношения с учетом вязкости. Под свободной поверхностью потенциал определяется с помощью метода разделения переменных.
Статья посвящена исследованию движения подводного тела в канале, покрытого неоднородным ледовым покровом. Его неоднородность заключается в учете таких эффектов, как пористость и переменная толщина. Движущееся подводное тело моделируется трехмерным диполем. Задача решается с помощью преобразования Фурье вдоль канала и разложения профиля колебаний льда поперек канала на нормальные моды колебаний упругой балки.
Статья посвящена математическому моделированию жидкости в результате удара упругим телом по свободной поверхности. Основной упор сделан на описании поведения жидкости в следе за ударом. В состоянии покоя жидкость имеет заданную конечную глубину. С использованием асимптотических методов выводится модель поведения жидкости в следе за ударом в случае большой начальной скорости удара и малой глубины жидкого слоя.
Рассмотрена задача о движении внешней нагрузки с постоянной скоростью вдоль замороженного канала с неравномерным сжатием. Лед моделируется как тонкая вязкоупругая пластина постоянной толщины. Края пластины приморожены к стенкам канала. Прогиб ледового покрова описывается в рамках линейной теории упругости. Жидкость под пластиной невязкая и несжимаемая. Течение жидкости, вызванное прогибом пластины, является потенциальным. Внешняя нагрузка моделируется движущимся с постоянной скоростью распределением давления. Задача решается с помощью преобразования Фурье вдоль канала и методом нормальных мод для формы прогибов льда поперек канала. Основным параметром для исследования в данной модели является эффект неоднородного сжатия ледового покрова.
В работе исследуется колебания упругой балки с переменной толщиной, находящейся в полном контакте с жидкостью (гидроупругие колебания) или при отсутствии жидкости (упругие колебания). Гидроупругие и упругие прогибы балки являются двумерными. Задача рассматривается без демпфирования колебаний и внешнего воздействия. Упругая балка тонкая, конечной длины, и с заданными краевыми условиями. Вычислены моды упругих и гидроупругих колебаний балки в случае линейной и кусочно-линейной толщины.