Цель предлагаемой статьи — обосновать применение авторского подхода и методологии, основанных на сочетании технологий машинного обучения и построения направленных графов с их последующей кластеризацией для системного изучения количественных и качественных характеристик рынка государственных закупок и поведения агентов этого рынка. В результате проведенного исследования выделены благодаря инновационному подходу к исследованию, основанному на сочетании технологий машинного обучения и теории сетей и графов, ранее неучтенные региональные и отраслевые факторы, влияющие на взаимоотношения агентов рынка государственных закупок. Систематизированы модели взаимоотношений на этом рынке в авторской трактовке, интегрирующей макроэкономическую ситуацию на рынке и маркетинговые стратегии игроков рынка. Выявлены такие устойчивые шаблоны поведения агентов рынка государственных закупок, как «изоляция», «консерватизм», «мобильность», и обосновано, что изолированное или консервативное поведение игроков рынка повышает вероятность возникновения коррупционных сговоров. Все вышеперечисленное не было системно изучено ранее и имеет научную новизну и высокую практическую значимость. Проведенные исследования способствовали приращению научного знания в прикладном применении теории сетей и графов, в вопросах государственного регулирования экономики, противодействия монополизации рынков и повышении конкуренции. Практические результаты работы связаны с формированием рекомендаций российским органам власти – регуляторам рынка государственных закупок и участникам торгов по выбору эффективных стратегий поведения на рынке.