Исследуется интеллектуальная система мониторинга и адаптации маршрута беспилотных летательных аппаратов (БПЛА) на основе нейросетевого анализа объектов риска. Рассматриваются алгоритмы автономной навигации, обеспечивающие анализ внешней среды и оперативную корректировку траектории полёта с учётом потенциальных угроз. Оцениваются возможности применения машинного зрения, нейросетевых алгоритмов, методов предобработки данных, детектирования объектов, семантической сегментации, алгоритмов траекторного планирования, предиктивного управления и адаптивной оптимизации маршрутов для идентификации препятствий, движущихся объектов и зон ограничения полётов. Анализируется роль интеллектуальных систем управления в архитектуре БПЛА, их влияние на повышение автономности, устойчивости и эффективности выполнения задач в динамически изменяющихся условиях. Предлагаемые решения ориентированы на снижение рисков, связанных с нештатными ситуациями, за счёт внедрения адаптивных стратегий управления полётом. Применяются методы системного анализа, компьютерного зрения и машинного обучения, включая свёрточные нейросети, алгоритмы предобработки изображений, фильтрации и сегментации данных, а также анализ сенсорных показателей. Оценка эффективности реализована посредством моделирования траекторий движения, тестирования алгоритмов идентификации угроз и анализа параметров устойчивости маршрутов БПЛА. Научная новизна заключается в разработке интегрированной системы интеллектуальной корректировки маршрута БПЛА, основанной на применении нейросетевых методов классификации объектов и адаптивных алгоритмов планирования траекторий. Разработаны механизмы предиктивного анализа рисков, обеспечивающие автоматическую корректировку маршрута при обнаружении препятствий, неблагоприятных погодных условий и зон ограниченного доступа. Предложенная архитектура управления сочетает технологии машинного зрения, анализа потоков данных и автоматизированного принятия решений, а также использует методы динамической маршрутизации, алгоритмы корректировки полёта в реальном времени и стратегии предотвращения столкновений. Такой подход обеспечивает повышение уровня автономности работы дронов. Разработанные алгоритмы интеллектуальной навигации могут быть внедрены в современные системы автономного управления БПЛА, обеспечивая адаптацию к динамическим условиям и повышение эффективности выполнения задач в различных сферах, включая оборонные и промышленные применения.
This article considers entropy analysis as a tool for assessing the sustainability and integration of regional economies into national and international economic systems. Three key types of entropy are de ned - economic diversi cation, income and employment distribution and interregional ties. The methodology for calculating entropy indicators based on the generalised Shannon entropy formula is presented. A comparative analysis of three hypothetical regions was conducted on the basis of entropy indices. The obtained results allow us to quantitatively assess the speci cs of regional development, identify imbalances and propose strategies to improve the sustainability and economic diversi cation of regions.
This article focuses on improving the information security of industrial enterprises through the automation of data transmission processes. As a solution, an autonomous unmanned aerial vehicle (UAV) equipped with three microcontrollers is proposed to handle ight control, data processing and transmission and information protection. The system utilises infrared data transmission channels, hardware encryption and a mechanism for the physical destruction of the storage medium, ensuring a high level of protection against cyberattacks and data breaches. The drone’s architecture is isolated from corporate networks and features mobility and autonomy, making it e ective in environments with limited infrastructure. The modular design of the device allows for adaptation to various application scenarios. The research results demonstrate that the proposed solution provides reliable and secure data transmission, enhancing the resilience of enterprises to modern cyber threats.