Обсуждается вопрос о том, может ли диффузия фотогенерированных носителей заряда из «пиксельного» пятна засветки в прилежащие области фотоприемной матрицы в сочетании с погрешностями покрытия фотоэлемента матрицы пятном быть (при заданных параметрах задачи) причиной наблюдаемого различия значений пороговых характеристик матричных ФПУ, определенных в экспериментах с однородной модулированной засветкой матрицы и в экспериментах с малым пятном засветки. Предложена схема анализа результатов Монте-Карло-расчетов фотосигнала элемента матрицы, нормированного на мощность пучка и засветку фотоэлемента, как функции размера пятна засветки. Посредством такого анализа может быть оценено различие значений порогового (минимального детектируемого) потока излучения в двух указанных случаях и влияние на него погрешности покрытия фотоэлемента пятном. Сообщается, каким образом анализ может быть распространен на случай линейчатых ФПУ с режимом временной задержки и накопления.
Представлена методика определения локальных дефектов в фотоэлектрических преобразователях (ФЭП) солнечного излучения путем бесконтактного измерения распределения температуры по площади ФЭП при подаче на него прямого и обратного напряжения смещения. Неоднородность распределения температуры по поверхности ФЭП возникает вследствие неоднородности плотности тока из-за наличия локальных дефектов. Температура определяется по интенсивности теплового излучения в инфракрасном (ИК) диапазоне спектра посредством специальной тепловизионной системы. Для исключения влияния бликов, неоднородности коэффициента излучения поверхности ФЭП, неоднородности чувствительности фотоприемной матрицы определяется разность сигналов фотоприемного устройства при подаче (прямого или обратного) напряжения на ФЭП и в отсутствие приложенного к ФЭП напряжения. Приведена программно-аппаратная реализация методики с использованием матричного фотоприемного устройства инфракрасного диапазона спектра 3–5 мкм формата 320 на 256 элементов.
Проведены исследования адмиттанса МДП-структур на основе n(p)-Hg1–xCdxTe (x = 0,21–0,23), выращенного методом молекулярно-лучевой эпитаксии на подложках Si и GaAs. Изучались возможности повышения значения произведения дифференциального сопротивления области пространственного заряда на площадь полевого электрода RОПЗA путем создания приповерхностных варизонных слоев с повышенным содержанием CdTe. Установлено, что создание варизонного слоя приводит к увеличению значения RопзA в 10–200 раз для МДП-структур на основе n-Hg0,78Cd0,22Te за счет подавления процессов туннельной генерации через глубокие уровни и уменьшение тока Шокли-Рида. МДП-структуры на основе n-Hg0,78Cd0,22Te без варизонного слоя, выращенные на GaAs-подложках, имеют значения RопзA, превышающие в 10 и более раз значения аналогичного параметра для структур, выращенных на Si-подложках.
Развита кинетическая теория высоковольтного тлеющего разряда (ВТР). Решено уравнение Пуассона в слое объёмного заряда с учётом потока ионов, поступающих из плазмы в слой, ионизации газа в слое электронами, ионами и быстрыми атомами. На катоде имеет место потенциальное и кинетическое вырывание электронов с поверхности. Для различных значений плотности газа и коэффициента вторичной эмиссии рассчитаны ВАХ, определены размеры слоя объемного заряда, получены распределения электрического поля в слое и другие характеристики ВТР. Предложенная математическая модель может быть использована для расчета характеристик ускорителей электронов на основе ВТР.
Изучался процесс коммутации короткого вакуумного промежутка с помощью вспомогательного разряда по поверхности диэлектрика путем высокоскоростной регистрации изображений излучающей в оптическом диапазоне спектра плазмы разряда. На основе анализа полученных экспериментальных данных высказано предположение о существенной роли излучения катодного пятна и катодного факела ультрафиолетового диапазона в процессе формирования токового канала в разряде.
Приведены результаты измерения поглощаемой плазмой мощности в стеллараторе Л-2М при электронном циклотронном резонансном (ЭЦР) нагреве плазмы на второй гармонике гирочастоты. Водородная плазма создавалась и нагревалась в вакуумной камере стелларатора при резонансном поглощении СВЧ-мощности в режиме импульсно периодической работы гиротронов. Полная энергия плазменного тороидального плазменного шнура и величина поглощенной мощности измерялись с помощью диамагнитной диагностики. Проведен учет экранирующего влияния металлической вакуумной камеры на измерение диамагнитных сигналов. Установлено, что при центральном ЭЦР-нагреве в плазме поглощается до 90 % мощности инжектированного гиротронного пучка, что согласуется с существующими теоретическими оценками.
Целью данной работы является сравнение экранирования электрического поля у концов холодных эмиттеров на основе углеродных нанотрубок (УНТ) и наностержней оксида цинка. Были выполнены расчеты напряженности электрического поля одиночного эмиттера, и эмиттера, расположенного в центре массива из 25 одинаковых элементов. Согласно проведенным расчетам, коэффициент усиления поля у концов нанообъектов по сравнению с его средним значением для случая одиночных УНТ в 4 раза больше, чем для одиночных наностержней ZnO. В случае массива нанообъектов коэффициент усиления у конца нанотрубки лишь в 1,5 раза превышает значение такового у конца наностержня, что является результатом экранирующего влияния окружения. При сопоставимости работ выхода из углеродных нанотрубок и наностержней ZnO следует ожидать близких значений плотностей токов эмиссии катодов рассматриваемых нанообъектов. Однако, в силу геометрии, условия тепло-отвода для случая наностержней оксида цинка предпочтительней. Следствием этого может быть большая временная стабильность холодных катодов на основе наностержней оксида цинка.
Установлено, что интегральные функции распределения спектров люминесценции ограненных алмазов природного происхождения по форме и положению в частотной области заметно отличаются от образцов бриллиантов лабораторного изготовления. Данные интегральные функции могут использоваться для идентификации бриллиантов различного происхождения.
При обработке поверхности CuCrZr-бронзы сканирующим пучком наносекундных лазерных импульсов с длиной волны излучения 355 нм выявлено образование структур в виде сфер диаметром около 500 нм, расположенных на ножках высотой до 1 мкм. Обнаружено влияние плотности энергии лазерного излучения и скорости сканирования лазерным пучком на формирование данных субмикронных структур. Показана возможность улучшения качества соединения металлических сплавов при диффузионной сварке за счет лазерной обработки поверхностей заготовок.
В работе рассматривается деформационное действие света на крупные плоские микрокристаллы (ПМК) галогенидов серебра AgBr толщиной порядка 40–80 нм и диаметром в пределах 40–500 мкм, синтезированных методом контролируемой двухструйной эмульсификации (КДЭ).
Экспериментально исследована возможность модификации тонких пленок хитозана в электронно-пучковой плазме кислорода. Плазмохимическая модификация пленок приводила к снижению кристалличности, увеличению содержания кислородсодержащих полярных групп, в первую очередь, –СООН. Также наблюдалось, по сравнению с исходными образцами, повышение гидрофильности поверхности хитозановых пленок, модифицированных в электроннопучковой плазме, причем этот эффект сохранялся по крайней мере в течение трех недель после обработки.
Исследована тонкая пленка, полученная осаждением на подложку фрагментов углеродного волокна, образовавшихся вследствие его взрывного разрушения при пропускании сильных импульсных токов. Показано, что при напряжении порядка 300 В пленка входит в область отрицательного дифференциального сопротивления N-типа, в которой наблюдаются релаксационные осцилляции напряжения. Предложен механизм возникновения отрицательного дифференциального сопротивления и появления осцилляций напряжения.