SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Пособие содержит основные понятия теории множеств, логики, теории графов в иллюстрациях и поясняющих примерах, адаптированных под потребности менеджмента и управления Может быть использовано как развернутый справочник для менеджера по современным формализованным представлениям.
Для студентов вузов, обучающихся по экономическим и управленческим специальностям и направлениям Представляет интерес для преподавателей и аспирантов, менеджеров-аналитиков, управленческих консультантов и пользователей компьютерных технологий в менеджменте.
Книга отражает современное развитие теоретико-групповых методов применительно к задачам математической физики. Она включает теорию инвариантов групп преобразований в римановых пространствах и групповой анализ уравнений Эйнштейна.
Изучаются алгебро-геометрические аспекты принципа Гюйгенса и законов сохранения. Излагаются основы теорииформальных групп преобразований Ли—Беклунда, инвариантныхдифференциальных многообразий и проводится групповая классификациянелинейных дифференциальных уравнений.
Рассчитана на математиков, физиков и механиков, интересующихся вопросами качественного анализа дифференциальных уравнений.
Четвертый том известной монографии, посвященный важному для теоретической физики спектральному анализу операторов. Изложение отличается от традиционных руководств физической направленностью в отборе материалов и примеров при сохранении математической строгости.
Для всех кто занимается функциональным анализом и его приложениями в физике.
Излагается обычная для уравнений математической физики тематика: распространение волн, теплопроводность, вопросы разрешимости, корректности. Акцент делается на линейных уравнениях с частными производными, но рассматриваются и нелинейные процессы. Определенное внимание уделяется нестандартным для рассматриваемой области направлениям. В первую очередь это теоретико-групповые методы изучения уравнений с частными производными, автомодельные решения и другие плоды исследования свойств симметрии. Несколько особняком стоит разъяснение теории дифференциальных форм, от которых не зависит остальное содержание. Но сама эта теория тесно примыкает к уравнениям математической физики и нуждается в простом и ясном описании. Изложение отличается краткостью и прозрачностью.
Для студентов, преподавателей, инженеров и научных работников.
Книга представляет собой самостоятельную часть курса математической физики, примыкающую к книге «Элементы прикладной математики» тех же авторов, но не зависимую от нее.
Основной особенностью является концентрация изложения вокруг физических задач, вывод математических методов из физической сущности задачи, возможно более полное прослеживание аналогий между математикой и физикой, отыскание физического смысла в математическом решении. Специальное внимание уделяется кинетическому уравнению, уравнению диффузии, законам сохранения, разрывам.
Книга предназначена студентам физических и других специальностей, для которых курс физики имеет определяющее значение, а также всем желающим познакомиться с физической сущностью методов математической физики.
Книга Куранта-Гильберта еще до своего появления на русском языке приобрела заслуженную популярность среди советских математиков и физиков.
Меньше всего она претендует на роль учебника: столь многообразный материал (линейная и квадратическая алгебра, теория интегральных уравнений, линейные дифференциальные уравнения, обыкновенные и в частных производных, основы вариационного исчисления, теория разложения, функциональные ряды и теория специальных классов функций) не может, при сохранении стиля учебника, уместиться в рамках одной книги.
Книга Куранта-Гильберта еще до своего появления на русском языке приобрела заслуженную популярность среди советских математиков и физиков.
Меньше всего она претендует на роль учебника: столь многообразный материал (линейная и квадратическая алгебра, теория интегральных уравнений, линейные дифференциальные уравнения, обыкновенные и в частных производных, основы вариационного исчисления, теория разложения, функциональные ряды и теория специальных классов функций) не может, при сохранении стиля учебника, уместиться в рамках одной книги.
Предлагаемый вниманию читателей курс представляет собой несколько расширенное изложение лекций по математической физике, которые автор читал студентам-математикам Ленинградского университета в течение последних лет. Как обычно, курс содержит только теорию линейных уравнений в частных производных, почти исключительно второго порядка. Естественным образом основное место в книге занимают наиболее разработанные и наиболее важные для приложений три классических типа уравнений: эллиптические, параболические и гиперболические.
Кроме основного текста, книга содержит еще четыре небольших по объему добавления, в которых излагаются некоторые более современные идеи и результаты теории уравнений в частных производных
В книге освещены численные методы математики, применяемые для решения различных задач с помощью современных вычислительных машин. Рассматриваются общие вопросы численного анализа, численные методы решения задач алгебры, проекционные и разностные методы решения задач математической физики. Предназначено для студентов вузов, обучающихся по специальности «Прикладная математика», а также может быть использовано аспирантами и инженерами, работающими в области прикладной математики.
Занимающаяся практическими вопросами математическая наука египтян созвучна с формой художественного творчества, пытающегося дать возможно более полное и совершенное изображение предметов. В рельефе и рисунках художник располагает все, насколько возможно, в плоскости, так как это позволяет представить наибольшее количество точных данных для реального изображения.