SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Содержит материал, составляющий основу топологических знаний. Излагаются понятия и теоремы общей и гомотопической топологий, дается классификация двумерных поверхностей, основных понятий гладких многообразий и их отображений, рассматриваются элементы теории Морса и теории гомологий с приложениями к неподвижным точкам.
Топология - сравнительно молодая математическая наука. Примерно за сто лет ее существования в ней достигнуты результаты, важные для многих разделов математики. Поэтому проникновение в “мир топологии” для начинающего несколько затруднительно, так как требует знания многих фактов геометрии, алгебры, анализа и других разделов математики, а также умения рассуждать.
Книга написана просто и наглядно. В форме, доступной для понимания школьников, она знакомит читателя с идеями топологии, ее основными понятиями и фактами. Большое количество рисунков облегчает усвоение материала. Этому же способствуют свыше двухсот задач.
Для школьников, преподавателей, студентов.
В данной книге читатель найдет не только частные приемы решения конструктивных задач с помощью классических средств - циркуля и линейки, но и построения при ограниченном пользовании этими инструментами, построения с помощью других средств решения, и, наконец, изложение вопроса о критериях разрешимости и об исстари знаменитых неразрешимых задачах.
Книга снабжена многочисленными задачами, решение которых по большей части вкратце указывается.
Настоящее второе издание второй части книги существенно отличается от первого в двух отношениях. Прежде всего, из материала первого издания сохранены лишь разделы посвященные непосредственно стереометрии вместе с ее дополнительными
главами (инверсия, теорема Эйлера, правильные многогранники и группы вращений): вопросы проективной и аналлагматической геометрии, а также синтетической теории конических сечений, входящие во вторую часть курса Адамара (и имеющиеся в первом издании второй части), в этом издании опущены. В то же время во втором издании книги помещены полные решения всех имеющихся в тексте задач.
Основой книги служит школьный курс геометрии на плоскости: однако содержание ее выходит за рамки существующих программ. Это энциклопедия элементарной геометрии, стоящая на уровне современной науки и написанная выдающимся математиком. Большое количество задач, многие из которых могут дать материал для творческой работы.
Книга воспроизводит содержание лекции, прочитанной автором участникам XXIX Московской математической олимпиады. В ней излагаются основные понятия, относящиеся к учению об “алгебрах Буля”, играющих большую роль в математической логике и важных для всех направлений математики, связанных с электронными вычислительными машинами и кибернетикой. В работе дается определение алгебры Буля и приводятся многочисленные примеры таких алгебр; в частности, специально рассматривается алгебра высказываний и указываются пути использования этой своеобразной алгебры для автоматизации математических доказательств; а также для самоконтроля приводятся упражнения.
Книга будет с интересом прочитана школьниками средних и старших классов, может быть использована в работе школьного математического кружка.
Книга предназначена для студентов физических и технических специальностей университетов и вузов.
Конспект лекций Е.В. Троицкого, 1-й курс математики, осенний семестр 1999/2000 уч. года
Книга отличается от традиционных руководств по линейной алгебре тем, что материал излагается в тесной связи с многочисленными приложениями. В виде отдельных глав представлены метод исключения Гаусса, ортогональные проекции, положительно определенные матрицы, линейное программирование и теория игр. Автор знаком советским читателям по переводу его (в соавторстве с Дж. Фиксом) «Теории метода конечных элементов» (М.: Мир, 1977).
Книга, несомненно, окажется полезной математикам-прикладникам различных специальностей; она заинтересует также и преподавателей, аспирантов и студентов университетов и втузов, преподающих или изучающих линейную алгебру и ее приложения.
Книга известного французского математика, уже знакомого нашему читателю по переводам его книг „Алгебраические группы и поля классов“ и „Когомологии Галуа“ (изд-во „Мир“, 1968), содержит изложение основ теории алгебр Ли и групп Ли, а также теорию комплексных полупростых алгебр Ли. Наряду с классическим случаем вещественных и комплексных групп Ли она охватывает случай р-адических групп Ли и является единственной в мировой литературе книгой, содержащей подробное изложение теории р-групп с точки зрения классических методов теории групп Ли.
Книга рассчитана на студентов старших курсов и аспирантов. Может быть полезна математикам различных специальностей.