SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Цель работы: моделирование процессов, происходящих в топочных камерах трубчатых печей пиролиза углеводородов, в случае расположения ярусов настенных горелок как на боковых стенах, так и на поду и своде печи. Взаимосвязанные процессы описываются системой дифференциальных уравнений в частных производных, которые включают условия сохранения энергии и количества движения, уравнения модели горения топливного газа в воздухе и уравнения переноса лучистой энергии. Проведены численные исследования с целью прогнозирования температурного состояния элементов печи в случае изменения расположения ярусов большого количества горелок небольшой мощности на футерованных стенах топочной камеры печи в виде прямоугольного параллелепипеда. Применение горелок, расположенных в различных местах топки печи, приводит к образованию сложных полей температуры и скоростей дымовых газов в радиантной камере. Теплота для проведения крекинга углеводородов в трубчатых реакторах в основном поступает за счет переноса энергии излучения продуктов сгорания, микроскопических частиц сажи и футеровок топки. В некоторых действующих установках по 8 ярусов горелки расположены только на двух боковых стенках радиантной камеры топки, что приводит к неравномерному распределению тепловых потоков по высоте трубчатого змеевика. В результате численного интегрирования системы дифференциальных уравнений получены поля скоростей и температуры в объеме топки, а также теплонапряженности реакционных труб. Расчеты показали, что при модернизации действующей печи путем расположения некоторых ярусов горелок на поду и на своде топки сохранением их общего количества удастся добиться более равномерного распределения поверхностных плотностей тепловых потоков вдоль реакционных труб.
Предложен механизм образования озона при фотолизе влажного воздуха ультрафиолетовым излучением ртутной лампы низкого давления. Кинетическая схема фотолиза содержит 4 фотохимические реакции, инициируемые квантами излучения на длине волны 184,95 нм, 4 фотохимические реакции, инициируемые квантами излучения на длине волны 253,65 нм, и 35 обратимых элементарных стадий с участием 12 частиц (атомов, радикалов и молекул). Численное моделирование с использованием предложенного механизма показало хорошее согласие с экспериментальными результатами.
В настоящей работе исследовано изменение спектральных характеристик и проводящих свойств тонких пленок фуллерена, осажденных из растворов ароматических и неароматических растворителей. Наглядно показано, что влияние природы растворителя существенно влияет на морфологию поверхности пленки. Прямые спектры видимого диапазона пленочных структур фуллерена С60 продемонстрировали максимумы коэффициента поглощения в диапазоне 330–500 нм. Расчёт оптической ширины запрещенной зоны явно демонстрирует возможность модернизации атомарной структуры плёнок посредством использования различных типов растворителей. Вольт-амперные характеристики показали увеличение кинетики заряда при облучении пленок фуллерена, осажденных посредством дихлорметана и тетрахлорметана. Дополнительно проведены исследования влияния частоты переменного тока на про-водящие параметры пленочных структур в диапазоне частот 1–100 кГц.
Экспериментально исследовано удаление примесей аммиака (100–200 ppm) в потоке влажного воздуха с расходом 30–150 м3/час УФ-излучением амальгамной лампы с ртутным разрядом низкого давления с длиной волны 185 нм и 254 нм. Наличие паров воды необходимо для эффективного удаления примесей УФ-излучением, поскольку при диссоциации молекул воды образуются высокоактивные радикалы OH и атомарного водорода H. Наличие капель воды резко снижает эффективность очистки. Рассмотрены основные реакции фотоокисления. Отмечена высокая эффективность удаления молекул аммиака одним фотоном 185 нм.
Представлены результаты экспериментального исследования фотоокисления примесей сероводорода (8–20 мг/м3) и формальдегида (3–7 мг/м3) в воздухе ультрафиолетовым излучением с длинами волн 184,95 и 253,65 нм при давлении 1 атм, начальной температуре 20 оС и относительной влажности воздуха 90 %. Создана модель для численного моделирования фотоокисления сероводорода и формальдегида в смеси с влажным воздухом. Кинетическая схема состоит из 7 и 4 фотохимических ре-акций, инициируемых квантами излучения на длинах волн 184,95 и 253,65 нм соответственно, и 43 индивидуальных обратимых химических реакций с участием 29 химических частиц (атомов, радикалов и молекул). Результаты численного моделирования хорошо согласуются с экспериментальными данными.
На образцах, изотопически чистых монокристаллов германия, полученных из всех пяти стабильных изотопов (70Ge, 72Ge, 73Ge, 74Ge, 76Ge), измерены значения пропускания излучения в терагерцовом спектральном диапазоне (для длин волн 30–3000 мкм).
Рассчитаны коэффициенты поглощения; установлено, что максимальное пропускания имеет место в диапазоне 200–800 мкм и соответствующие коэффициенты поглощения для этого диапазона составляют менее 1 см-1.