SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Продолжение известной книги американского ученого с тем же названием (М..- Мир, 1982) содержит дальнейшее изложение (прежде всего для физиков) математического аппарата современной теоретической физики (группы, представления групп, многообразия, риманова геометрия) и описание его применений в квантовой теории и теории относительности; последние главы посвящены зарождению турбулентности.Для математиков-прикладников, физиков, аспирантов и студентов
В книге излагается с единой точки зрения теория классических ортогональных полиномов, сферических, цилиндрических и гипергеометрических функций. Все специальные функции рассматриваются как частные решения возникающего во многих задачах математической физики и квантовой механики дифференциального уравнения определенного типа. Для решений этого уравнения с помощью предложенного авторами обобщения явной формулы для классических ортогональных полиномов (формулы Родрига) найдено интегральное представление, из которого в дальнейшем получены все основные свойства перечисленных специальных функций. Рассматриваются приложения к задачам математической физики и квантовой механики. Книга предназначена для студентов, аспирантов, научных работников и инженеров-исследователей, а также для всех, имеющих дело с математическими расчетами. Она может быть использована при изучении теоретической и математической физики.
В книге изложен учебный материал по математической теории поля, дифференциальным уравнениям в частных производных и линейной алгебре в объеме, соответсвующем учебной программе по курсу Методы математической физики
для физико-математических факультетов педагогических институтов.
В книге элементарно и на современном уровне описываются методы малого параметра в применении к широкому кругу задач механики и математической физики. Наряду с классическими методами в ней рассматриваются и оригинальные, разработанные автором. Многочисленные примеры и задачи, имеющие также и самостоятельный интерес, делают изложение ясным и понятным. Большое количество примеров дается в заключение глав в качестве упражнений.
Книга представляет интерес для специалистов, работающих в области прикладной математики и механики, а также для студентов и аспирантов, специализирующихся в указанных областях.
Двухтомный курс Ф. Морса и Г. Фешбаха занимат особое место в литературе по математической физике. Он написан физиками для физиков и инженеров и показывает математические методы в действии, наиболее успешно применяемые при изучении различных полей. Излагается ряд важнейших разделов математики в плане их применения к задачам физики и техники. Авторы стремятся выяснить основные идеи, существо и физический смысл излагаемых методов. Курс Морса и Фешбаха лежит на стыке физики и математики. Он отличается от обычных курсов математической физики своей значительно большей физичностью, а от курсов теоретической физики тем, что в нем основное место уделяется разработке математического аппарата.
Двухтомный курс Ф. Морса и Г. Фешбаха занимает особое место в литературе по математической физике. Он написан физиками для физиков и инженеров и показывает в действии математические методы, наиболее успешно применяемые при изучении различных полей. В книге излагается ряд важнейших разделов современной математики в плане их применения к задачам физики и техники. Большим достоинством является то, что авторы всюду стремятся выяснить основные идеи, существо и физический смысл излагаемых методов. Поэтому книга представляет значительный интерес и для математиков, которым она покажет новые стороны известных им методов. Некоторые из излагаемых методов (например, метод теории возмущений во втором томе) успешно применяются физиками, но еще недостаточно известны математикам и ждут своего математического обоснования. И физики и математики найдут в книге большое число подробно разобранных примеров важных прикладных задач. Курс Морса и Фешбаха лежит на стыке физики и математики. Он отличается от обычных курсов математической физики своей значительно большей физичностью, а от курсов теоретической физики тем, что в нем основное место уделяется разработке математического аппарата. Книга будет полезной студентам, аспирантам и научным работникам математических, физических и инженерных специальностей и вообще всем лицам, сталкивающимся с применением современной математики.
Том второй известной монографии Куранта подвергся значительной переработке п в данном виде является, по существу, новой книгой. Характер и целенаправленность
сочинения остались прежними: автор мастерски систематизирует огромный фактический материал, составляющий фундамент теории уравнений с частными производными, /неразрывно связывает изложение с приложениями и старается, не перегружая текста, пропитать изложение новыми, достаточно созревшими идеями. Форма изложения индуктивная, метод и мотивировка часто выступают на первый план. Книга учитывает
и частично отражает результаты новейших исследований.
Книга Куранта-Гильберта Методы математической физики
еще до её выхода на русском языке приобрела заслуженную популярность среди советских математиков и физиков. Многообразный материал монографии охватывает такие темы как: линейная и квадратическая алгебра, теория интегральных уравнений, линейные дифференциальные уравнения, обыкновенные и в частных производных, основы вариационного исчисления, теория разложения, функциональные ряды и теория специальных классов функций, проблемы колебаний и задачи о собственных значениях в математической физике, применение вариационного исчисления к задачам о собственных значениях.
Книга представляет собой самостоятельную часть курса математической физики, примыкающую к книге «Элементы прикладной математики» тех же авторов, но независимую от нее. Основной особенностью является концентрация изложения вокруг физических задач, вывод математических методов из физической сущности задачи, возможно более полное прослеживание аналогий между математикой и физикой, присутствие физического смысла в математическом решении. Специальное внимание уделяется КИНЕТИЧЕСКОМУ УРАВНЕНИЮ, УРАВНЕНИЮ ДИФФУЗИИ, ЗАКОНАМ СОХРАНЕНИЯ, РАЗРЫВАМ.
Книга предназначена в основном для студентов физических и других специальностей, для которых курс физики имеет определяющее значение, а также для всех желающих ПОЗНАКОМИТЬСЯ С ФИЗИЧЕСКОЙ СУЩНОСТЬЮ МЕТОДОВ МАТЕМАТИЧЕСКОЙ ФИЗИКИ.
Книга отражает современное развитие теоретико-групповых методов применительно к задачам математической физики. Она включает теорию инвариантов групп преобразований в римановых пространствах и групповой анализ уравнений Эйнштейна. Изучаются алгебро-геометрические аспекты принципа Гюйгенса и законов сохранения. Излагаются основы теории формальных групп преобразований Ли—Беклунда, инвариантных дифференциальных многообразий и проводится групповая классификация нелинейных дифференциальных уравнений. Рассчитана на математиков, физиков и механиков, интересующихся вопросами качественного анализа дифференциальных уравнений.