SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Предназначено для студентов инженерно-физических, физико-технологических и других специальностей. В книге подробно излагаются основные методы решения задач математической физики (методы Фурье, функции Грина и др.) и специальные функции — цилиндрические, сферические, гамма-функции и др.
В сборник включены материалы, обсуждавшиеся на семинаре по некорректным задачам математической физики и анализа, посвященном 50-летию академика М. М. Лаврентьева (Новосибирск, 19–24 июля 1982 г.). В статьях рассматриваются методы регуляризации операторных уравнений первого рода, проводится исследование вопросов корректности обратных задач для дифференциальных уравнений, задач интегральной геометрии, аналитического продолжения и других неклассических задач современной математической физики и анализа. Книга предназначена для математиков, геофизиков и других научных работников, интересующихся неклассическими проблемами современной прикладной математики.
Написанное английским математиком введение в геометрические методы математической физики. Содержит основные сведения по дифференциальной геометрии вплоть до понятий римановой геометрии и общей теории связностей, а также некоторые физические приложения, — в частности, из общей теории относительности и теории калибровочных полей.
Для математиков и физиков, желающих ознакомиться с приложениями геометрии в математической физике.
В книге академика РАН Владимирова В. С. выполнен краткий обзор задач и методов математической физики. Математическая физика — это теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство.
Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики, как теоретическая механика, гидродинамика и теория упругости.
Сборник содержит задачи на вывод уравнений и граничных условий. Большое внимание уделяется различным методам решения краевых задач математической физики. Наряду с ответами к задачам приводятся указания, а для многих задач — решения, иллюстрирующие применение основных методов.
Третье издание. Для студентов университетов.
Пособие содержит задачи (по 30 вариантов каждой) из раздела высшей математики «Уравнения математической физики».
Задачи охватывают следующие темы: задачи Коши для квазилинейных дифференциальных уравнений с частными производными первого порядка; метод разделения переменных решения краевых задач для уравнений Лапласа и Пуассона в различных областях; начально-краевые задачи для уравнения теплопроводности и волнового уравнения; краевые задачи для уравнения Гельмгольца и интегрального уравнения Фредгольма II рода.
Каждая глава пособия начинается с изложения теоретических сведений и разбора примера решения конкретной задачи.
Предназначено для студентов старших курсов, обучающихся по техническим специальностям, а также аспирантов и преподавателей.
Книга ставит своей целью перенесение на физические проблемы известной «изопериметрической теоремы», утверждающей, что из всех плоских фигур заданного периметра круг имеет наибольшую площадь. Она содержит очень большое число ярких физических теорем, родственных изопериметрической теореме («из всех плоских мембран заданной площади наименьшую основную частоту имеет круглая мембрана» и др.), иногда довольно неожиданных; наряду с этим здесь имеется большое число недоказанных гипотез и постановок вопросов. В доказательстве авторы широко пользуются наглядными соображениями геометрического характера.
Книга, принадлежащая перу известных американских математиков и педагогов Г. Полиа (или Д. Пойя) и Г. Сеге. Рассчитана на студентов средних и старших курсов математических и физических специальностей, инженеров и научных работников.
В книге изложено почти без изменений содержание годового курса лекций по уравнениям математической физики, прочитанных автором на экспериментальном потоке механико-математического факультета МГУ.
По сравнению с имеющимися математическими курсами акцент делается на связи и взаимодействия с геометрией и физикой, а также на физическую интерпретацию результатов. Книга содержит элементы теории основных уравнений математической физики, изложенные на основе функционального анализа и теории обобщённых функций. В частности, в книге дано нетрадиционное изложение простейших аспектов теории потенциала, а также обсуждаются коротковолновые асимптотики решений гиперболических уравнений, связывающие волновую оптику с геометрической.
В конце каждого параграфа книги имеются задачи, помогающие усвоению материала и дополняющие основное содержание книги. Для студентов, аспирантов, научных работников — математиков и физиков.
Книга представляет собой самостоятельную часть курса математической физики, примыкающую к книге «Элементы прикладной математики» тех же авторов, но не зависимую от нее.
Основной особенностью является концентрация изложения вокруг физических задач, вывод математических методов из физической сущности задачи, возможно более полное прослеживание аналогий между математикой и физикой, отыскание физического смысла в математическом решении. Специальное внимание уделяется кинетическому уравнению, уравнению диффузии, законам сохранения, разрывам.
Книга предназначена студентам физических и других специальностей, для которых курс физики имеет определяющее значение, а также всем желающим познакомиться с физической сущностью методов математической физики.
Книга содержит изложение курса лекций, которые автор читал в Московском и Новосибирском университетах. Направленность книги связана с интересами автора в области приложений дифференциальных уравнений к механике сплошных сред и с разработками численных методов решения этих уравнений.
Во втором издании (1-е издание выходило в 1971 г.) основной переработке подверглась теория симметрических гиперболических систем. В частности, изложена теорема существования решений у диссипативной смешанной задачи в случае двух пространственных и одной временной переменных.
Книга представляет интерес как для студентов, изучающих курс уравнений математической физики, так и для лиц, специализирующихся в области приложений уравнений в частных производных и численных методов их решения.