SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Целью описываемой в настоящей статье работы являлся анализ взаимного теплового влияния двух печатных проводников печатной платы, закрепленной на металлическом основании в условиях космического вакуума в зависимости от расстояния между проводниками при их нахождениях в различных слоях печатной платы, а также определение расстояния, при котором взаимное влияние оказывается пренебрежимо мало. Приводятся результаты задач, которые были решены для достижения цели: выполнен расчет значений разности температур между печатными проводниками и металлической подложкой при разном заданном расстоянии между двумя печатными проводниками при их расположении на различных слоях; выполнена аппроксимация результатов расчета; найдено расстояние, при котором взаимное тепловое влияние печатных проводников становится пренебрежимо малым. Для расчета использовался численный метод, реализованный в САПР. Приводится пример конечно-элементной сетки и температурного поля печатной платы. Приводятся результаты расчета в виде значения перегрева проводников. Описывается методика, использованная для обработки результатов расчетов в САПР, учитывающая температурный коэффициент сопротивления материала печатных проводников. Приводятся функции с числовыми значениями всех коэффициентов, которыми была проведена аппроксимация. Приведены примеры графиков, построенных по результатам аппроксимации, и значения, полученные в САПР в одной системе координат. Производится сравнение обоих результатов и приводится погрешность аппроксимации. Погрешность лежит в пределах ±3◦C, что для технических расчетов приемлемо. По функциям, полученным при аппроксимации, найдены и построены графики зависимостей расстояния между печатными проводниками, при котором взаимное влияние практически исчезает, от эквивалентной толщины слоев изоляционных материалов между печатным проводником и основанием. Совокупность этих материалов названа пакетом. Эквивалентная толщина пакета - величина, приведенная к единому коэффициенту теплопроводности. В реальных платах могут использоваться разные материалы с разными коэффициентами теплопроводности. Приводится объяснение этих зависимостей. Обсуждается вопрос применения полученных результатов при проектировании печатных плат. Приводится пример конкретного применения полученных результатов на практике.
Рассмотрена возможность обеспечения тепловых режимов элементов и функциональных узлов, используемых в объемных печатных платах, создаваемых с помощью аддитивных технологий. Приведены расчеты, отображающие тепловые характеристики компонентов, интегрированных в 3D-MID изделия из диэлектрического материала, а также предоставлены расчеты по снижению температурных показателей. Проведен анализ экспериментальных данных. Расчеты выполнены с применением САПР SolidWorks
В статье приведены результаты применения метода акустической эмиссии (АЭ) и алгоритмов машинного обучения в задаче диагностики дефектов расслоения структуры многослойной печатной платы (МПП). Для решения поставленной задачи применяется комбинация физического и вычислительного экспериментов. Для проведения натурных испытаний в исследовании используется вибростенд для формирования нагрузки на испытуемый объект и получения сигналов акустической эмиссии. Вычислительный эксперимент проводится с помощью математического моделирования в специализированной среде ABAQUS. Для получения наилучшего решения задачи в ходе эксперимента решается оптимизационная задача по определению частоты гармонического сигнала, формируемого вибростендом, для получения максимального отклика исследуемой МПП и однозначной идентификации дефекта расслоения. В численных экспериментах были промоделированы воздействия и реакции (сигналы АЭ) МПП при различных частотах входных вибросигналов, лежащих в диапазоне от 100 до 2000 Гц. Натурные эксперименты проводились в лаборатории контроля и испытаний радиоэлектронных средств кафедры КПРЭС РТУ МИРЭА. Результаты исследования показали, что наиболее эффективной для обнаружения дефекта расслоения является частота вибрационного воздействия, равная 1500 Гц (дефект почти прямоугольной формы размером 30×37 мм). В дальнейшем это было подтверждено корреляционным анализом, позволившим выявить максимальные различия между сигналами акустической эмиссии годного образца МПП и образца с внесенным дефектом расслоения для входного вибровоздействия заданной частоты. Вторая часть исследования посвящена обработке результатов физического и вычислительного экспериментов, установлению степени адекватности полученных математических моделей реальным образцам МПП и процессам, протекающим в них, а также применению алгоритмов машинного обучения для более достоверной диагностики дефектов МПП. В представленном исследовании в качестве алгоритмов машинного обучения применялись методы случайного леса и опорных векторов (SVM). По результатам их выполнения была оценена точность работы двух алгоритмов.