SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
In this paper, we investigate an initial boundary-value problem for a pseudo-subdiffusion equation involving the Hilfer time-fractional derivative on a metric graph. At the boundary vertices of the graph, we used the Dirichlet condition. At the branching points (inner vertices) of the graph, we use δ-type conditions. Such kind of conditions ensure a local flux conservation at the branching points and are also called Kirchhoff conditions. The uniqueness of a solution of the considered problem is shown using the so-called method of energy integrals. The existence of a regular solution to the considered problem is proved. The solution is constructed in the form of the Fourier series.
Исследуется математическая модель развития «in vitro» клеточной популяционной системы, включающая два типа клеток: здоровых и больных, например раковых. Модель позволяет описывать различные сценарии поведения клеток, в том числе процесс перерождения здоровых клеток в больные. Модель представлена системой ОДУ второго порядка. Биологический смысл системы накладывает определенные ограничения на фазовые переменные системы и ее параметры. Так, фазовые переменные, отражающие популяции клеток, должны быть неотрицательными, так что в качестве фазового пространства системы следует рассматривать неотрицательный квадрант. Параметры системы также имеют ограничения, вытекающие из их биологического смысла. Анализ этих ограничений приведен в статье. В работе проведен полный анализ положений равновесия. В частности, указаны условия на параметры, когда система имеет одно, два, три или четыре положения равновесия в неотрицательном квадранте. Описано условие перехода положения равновесия из состояния, находящегося внутри положительной области, на координатную ось. Рассмотрены условия устойчивости положений равновесия в некоторых случаях. Построены фазовые портреты системы при различных параметрах, иллюстрирующие случаи разного количества положений равновесия. Для системы с помощью метода локализации инвариантных компактов найдены границы для ограниченных траекторий, определены условия, когда в полученном локализирующем множестве не существует цикл.
Для систем обыкновенных дифференциальных уравнений (ОДУ) с невырожденной линейной частью в общем и гамильтоновом случаях ставится задача отыскания инвариантных координатных подпространств в координатах ее нормальной формы, вычисленной вблизи положения равновесия. Приведены условия существования таких инвариантных подпространств в терминах резонансных соотношений между собственными числами линейной части системы. Дан алгоритм поиска резонансных соотношений между собственными числами без их явного вычисления, который существенно использует методы компьютерной алгебры и q-аналог субрезультантов многочлена. Обсуждается его реализация в трех распространенных системах компьютерной алгебры – Mathematica, Maple и SymPy. Приведены содержательные модельные примеры.
В статье представлен метод построения векторных полей, фазовые портреты которых имеют конечные множества заданных особых траекторий (предельных циклов, простых и сложных особых точек, сепаратрис) и заданные топологические структуры в ограниченных областях фазовой плоскости. Задача построения таких векторных полей является обобщением ряда известных обратных задач качественной теории обыкновенных дифференциальных уравнений. Предложенный метод её решения расширяет возможности математического моделирования динамических систем с заданными свойствами в различных областях науки и техники.