SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
«Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.
Том 4 является логическим продолжением трех предыдущих ориентированных на практику томов и содержит более четырехсот подробно решенных задач, но при этом отличается более детальным изложением теоретических вопросов и может служить самостоятельным замкнутым курсом теории функций
комплексного переменного. Помимо вопросов, обычно включаемых в курсы такого рода, в книге излагается ряд нестандартных — таких, как интеграл Ньютона— Лейбница и производная Ферма— Лагранжа.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.
Том 5 охватывает все разделы учебных программ по дифференциальным уравнениям для университетов и технических вузов с углубленным изучением математики. Наряду с минимальными теоретическими сведениями в нем содержится более семисот детально разобранных примеров. Среди вопросов, нестандартных для такого рода пособий, следует отметить примеры по теории продолжимости решения задачи Коши, нелинейным уравнениям в частных производных первого порядка, некоторым численным методам решения дифференциальных уравнений.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
Настоящее пособие содержит описания алгоритмов, предлагаемых к реализации на ЭВМ студентам механико-математического факультета МГУ на занятиях
по ”Практикуму на ЭВМ”. Для всех алгоритмов приводится необходимое теоретическое обоснование, соответствующие расчетные соотношения и рекомендации по их практическому осуществлению на ЭВМ (организация процесса вычислений, хранения данных и результатов в памяти ЭВМ и тд.)
В пособии содержатся все традиционные разделы курса обыкновенных дифференциальных уравнений. Излагаются важные как в теоретическом, так и в прикладном отношении разделы по теории дифференциальных уравнении с аналитическими правыми частями и по теории устойчивости движения.
Книга является учебником по курсу математического анализа и посвящена дифференциальному и интегральному исчислениям функций одной и нескольких переменных. В ее основу положены лекции, прочитанные авторами на механико-математическом факультете МГУ им. М. В. Ломоносова.
В учебнике предложен новый подход к изложению ряда основных понятий и теорем анализа, а также и к самому содержанию курса.
Для студентов университетов, педагогических вузов и вузов с углубленным изучением математики.
Этот обзор посвящен, в основном, локальной теории обыкновенных дифференциальных уравнений. В него не включена
теория бифуркаций; ей будет посвящена отдельная статья. Метод усреднения излагается в обзоре В. И. Арнольда, В. В. Козлова, А. И. Нейштадта «Математические аспекты классической и небесной механики» (т. 3 настоящего издания).
Книга состоит из 21 главы и разделена на две части. В первой части рассматриваются дифференциальные уравнения в вещественной области, во второй - в комплексной области. Основные работы Штурм-Лиувилля, Биркгоффа и Бохера изложены исчерпывающе! В книге приведено огромное количество литературных ссылок, охватывающих всё наиболее существенное в области дифференциальных уравнений за последние 200 лет.
Эта книга является развитием лекции, прочитанной автором в Московском университете.
В ней рассказывается, как из простого геометрического понятия с помощью математической абстракции возникло общее определение расстояния. Приведены различные примеры пространств с расстоянием, так называемых метрических пространств. При этом оказывается, что общее понятие расстояния связано с разнообразными математическими фактами.
На основе понятия расстояния можно изучать задачи о кратчайших путях на поверхностях, геометрические свойства многомерных пространств, методы помехоустойчивого кодирования сообщений, методы «сглаживания» результатов измерений и др.
Автору хотелось доступными для массового читателя средствами показать, как одна плодотворная идея освещает широкий круг вопросов и служит источником для получения неожиданных результатов или нового взгляда на какую - либо область знания.
Эта ситуация, характерная для любой науки, в математике очень часто проявляется в наиболее чистом виде, не заслоненная обилием необходимых, но мешающих подробностей.