SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Выдающийся судебный деятель и ученый-юрист, блестящий оратор и талантливый писатель-мемуарист, Анатолий Федорович Кони был одним из образованнейших людей своего времени. Широта его знаний в области литературы, истории, философии, права, медицины и психологии поражала знавших его людей. Исключительно богат был и его жизненный опыт. Сформировавшийся под влиянием просветительских идей шестидесятых годов, А. Ф. Кони никогда не примыкал к революционной интеллигенции, но чуть ли не с первых дней своей службы в судебном ведомстве находился в скрытой, а порою и в явной оппозиции к царскому правительству и его высшим представителям. Сочинения А. Ф. Кони — его теоретические работы по вопросам права и судебные речи — проникнуты идеями гуманизма и справедливости. Их без преувеличения можно отнести к высшим достижениям русской юридической мысли.
Учебное пособие содержит сведения о тензорах и операциях тензорной алгебры, криволинейных координатах, внешнем дифференцировании и интегрировании дифференциальных форм, векторном анализе. Операторы векторного анализа определяются с помощью внешнего дифференцирования, что позволяет легко вывести их свойства из свойств внешнего дифференциала.
Основную концепцию пособия можно кратко сформулировать так: векторный анализ с точки зрения исчисления дифференциальных форм. Характерный стиль изложения — бескоординатный.
Пособие содержит материал, посвящённый приложениям излагаемого аппарата к физике: тензор инерции абсолютно твёрдого тела, уравнения динамики точки в криволинейных координатах (уравнения Лагранжа), уравнения электродинамики на языке дифференциальных форм, интегральные соотношения в завихрённых векторных полях, теорема о скорости изменения фазового объёма.
Пособие предназначено для студентов физических специальностей университетов, но может быть полезно и студентам-математикам.
Книга представляет собой учебное руководство для студентов вузов. В ней содержится предусмотренный учебными программами материал по векторной алгебре, дифференциальной геометрии и теории поля. Изложение построено с учетом потребностей технических дисциплин, в которых используется векторное исчисление.
Книга написана просто и ясно; это делает ее доступной пониманию студентов первого курса, впервые приступающих к изучению высшей математики. Книга окажется полезной и в условиях заочного обучения.
Книга посвящена важному геометрическому методу анализа и его приложениям к разным задачам алгебры многочленов, теории функций, теории обыкновенных дифференциальных уравнений. Ряд существенных результатов принадлежит авторам книги.
Книга может быть рекомендована студентам физико-математических специальностей, аспирантам, научным работникам, интересующимся различными нелинейными проблемами. Она может также служить введением в круг идей и методов интенсивно развивающегося в настоящее время нелинейного функционального анализа.
Настоящее пособие имеет своей целью дать изучающим его, главным образом студентам вузов и втузов, необходимые сведения по векторному исчислению для того, чтобы можно было в дальнейшем изучать векторным способом другие дисциплины, как, например, теоретическую механику, гидромеханику, теорию электричества.
Курс снабжен большим количеством задач геометрического и элементарно-механического характера, помогающих лучшему усвоению понятий и методов векторного исчисления.
Метод внешних форм, или теория систем в инволюции, составляет немаловажную часть общей теории интегрирования систем дифференциальных уравнений; в проблеме совместности и степени произвола общего решения метод Картана занимает первое место.
«Только в результате ряда поисков условий интегрируемости уравнений в частных производных,— пишет Картан,— я пришел к моей теории структуры непрерывных групп»; и далее: «Я хотел создать теорию, куда входили бы понятия и операции, независимые от всякой замены переменных, как зависимых, так и независимых; для этого было необходимо заменить частные производные дифференциалами, которые имеют внутреннее значение.
Я систематически изучал систему уравнений в частных производных в виде уравнений в полных дифференциалах, т. е. в виде систем Иффа. Возникшая отсюда теория систем в инволюции позволила мне развернуть мои работы по теории бесконечных групп преобразований. Старые проблемы, например задача Софуса Ли интегрирования дифференциальных систем, допускающих инфинитезимальные преобразования, привели меня к новой точке зрения на механику и природные законы».
И, наконец, добавляет: «Новая концепция позволила мне строго исследовать совместную гравитацию и электромагнетизм. Я добавил совместную гравитацию уравнений Эйнштейна, построенных на базе его единой теории поля».
Данное пособие составлено по материалам одноименного курса лекций для студентов физических специальностей университетов. В первой части изучаются элементы полилинейной алгебры, необходимые для изучения тензорных объектов дифференциальной геометрии.
Во второй части изучается аппарат дифференциального исчисления тензоров, использующийся в механике сплошной среды и общей теории относительности.
Рассмотрены следующие темы: дифференциальные формы и внешнее дифференцирование, производная Ли, связность и ковариантное дифференцирование, тензор Римана.
Книга представляет собой краткое введение в теорию внешних форм. Она состоит из трех глав: 1) Алгебра внешних форм. 2) Внешнее дифференцирование. 3) Интегрирование форм по цепям. Автор ограничивается рассмотрением внешних форм и цепей в конечномерном евклидовом пространстве. Но на этом материале дается достаточное представление об отношениях сопряженности между пространствами форм и цепей и об основных парах сопряженных операторов.
Книжка написана весьма просто и понятно. Выкладки и рассуждения везде проведены без существенных пропусков. Настоящая книга может быть полезной студентам математических специальностей университетов, которые слушают курсы анализа и геометрии. Возможно также, что ею воспользуются механики и физики, заинтересованные в методах тензорного исчисления.
Настоящий сборник издается в связи со 100-летием со дня рождения крупнейшего геометра, профессора Московского университета, заслуженного деятеля науки и техники, Дмитрия Федоровича Егорова (1869—1931).
Наиболее важные работы его по дифференциальной геометрии, помещенные в различных журналах, отечественных и зарубежных, были собраны, переведены и просмотрены ныне покойным профессором МГУ С. П. Финиковым и членом-корреспондентом АН СССР, профессором МГУ Л. Н. Сретенским.
В книге систематически излагаются основы тензорного анализа и даются приложения его в теории поверхностей и теории оболочек. Она дает также солидный математический аппарат для изучения теории упругости.
В этой книге читатель найдет много научных результатов, принадлежащих автору. Укажем, например, на построения специальных координатных систем, имеющих применение в общей теории оболочек, и на новый раздел — теорию ковариантов.