Рассмотрены параметры средневолнового инфракрасного фотоприемного устройства, изготовленного в виде гибридной микросхемы на основе фокальной матрицы планарных n+–pпереходов HgCdTe с числом 20482048 элементов и кремниевого мультиплексора. Температурная зависимость обратного тока элементов в диапазоне 125–300 К имела характерную зависимость Аррениуса с энергией активации близкой к ширине запрещенной зоны полупроводника и лимитировалась диффузионной компонентой тока. При более низкой температуре ток лимитировался генерацией носителей с участием глубокого уровня локализованного вблизи середины запрещенной зоны. Гистограмма обнаружительной способности элементов матрицы имела вид симметричной кривой с максимумом и средним значением 1,31012 см Гц1/2/Вт.
Разработана конструкция и изготовлены матричные ФЧЭ форматом 384288 элементов с шагом 25 мкм с длинноволновой границей чувствительности по уровню 0,5 около 9,5 мкм. Средняя величина R0А фотодиодов по всему массиву матрицы равна 100 Ом см2. Разработаны схема и топология, по которым изготовлены матричные высокоскоростные мультиплексоры форматом 384288 элементов с шагом 25 мкм, обеспечивающие рабочие режимы на тактовой частоте до 20 МГц. Методом гибридной сборки на индиевых столбах изготовлено матричное ФПУ форматом 384288 элементов с шагом 25 мкм с параметрами: средняя величина NETD < 30 мК, количество работоспособных элементов > 97 %. Использование мезатравления для разделения отдельных фотодиодов снижает фотоэлектрическую связь и обеспечивает высокое пространственное разрешение матричного ФПУ, равное 11,25 штр/мм. Представлены примеры использования системы микросканирования для снижения дефектных пикселов в кадре изображения и/или увеличения формата кадров до 768576. Показано, что в результате использования микросканирования в тепловизионном канале на основе разработанного ФПУ при переходе к формату 768576 получено улучшение пространственного разрешения в 1,4 раза при одинаковой величине минимально разрешаемой разности температур (МРРТ), а МРРТ на частоте 0,44 мрад-1 уменьшается с 1,6 К до 0,9 К по сравнению с исходным форматом 384×288.
Вольт-фарадные характеристики (ВФХ) МДП-систем на основе nBn-структуры из HgCdTe, выращенной методом молекулярно-лучевой эпитаксии на подложках из GaAs (013), впервые исследованы при разных частотах и температурах. При помощи емкостных измерений найдена концентрация электронов в приповерхностном слое пленки, которая хорошо соответствует концентрации легирующей примеси индия. Показано, что ВФХ МДП-систем имеют высокочастотный вид в широком диапазоне условий измерения, а произведение дифференциального сопротивления области пространственного заряда на площадь электрода в режиме сильной инверсии достигает значения 40 кОм×см2. Обнаружен эффект уменьшения емкости МДП-системы в режиме обогащения после освещения излучением с длиной волны 0,91 мкм, который можно объяснить изменением энергетической диаграммы резкого гетероперехода при изменении зарядового состояния дефектов под действием освещения.
В широком диапазоне условий измерения экспериментально исследован адмиттанс МДПструктур на основе МЛЭ p-Hg1-xCdxTe/Si(013) с приповерхностным варизонным слоем с повышенным содержанием CdTe и без такого слоя, причем при использовании в качестве диэлектрика Al2O3 и CdTe/Al2O3. Показано, что вольт-фарадные характеристики (ВФХ) МДПструктур на основе МЛЭ p-Hg0,70Cd0,30Te без варизонного слоя при 77 К имеют высокочастотный вид относительно времени перезарядки быстрых поверхностных состояний. Это позволяет определять концентрацию дырок по значению емкости в минимуме низкочастотной ВФХ при 77 К (в отличие от случая x = 0,21–0,23). Установлено, что для МДП-структуры на основе p-HgCdTe с варизонным слоем значения дифференциального сопротивления области пространственного заряда в режиме сильной инверсии в 10–100 раз больше, чем для МДПструктуры на основе p-HgCdTe без такого слоя.
Проведен анализ гистограммы темновых токов матриц длинноволновых фотодиодов, изготовленных из гетероэпитаксикальных структур (ГС) Cd0,22Hg0,78Te/CdTe/ZnTe/ GaAs(301). Максимум гистограммы соответствует диффузионным токам для номинальных фотоэлектрических параметров CdHgTe. Имеются единичные фотодиоды с темновыми токами, на порядки превышающими диффузионный ток. Вероятность их появления связывается с V-дефектами структуры ГС, плотность которых составляет величину порядка 103 см-2 и которые представляют собой области нарушеннной структуры CdHgTe с избытком теллура. Имеется достаточно большое количество диодов (десятки процентов) с повышенными темновыми токами. Исследование C-Vхарактеристик МДП на ГС показывает наличие положительного заряда, неоднородно распределенного по поверхности и достаточного для инверсии типа проводимости в отдельных областях. Образование шунтирующего слоя n-типа на поверхности должно приводить к увеличению темновых токов фотодиодов, попадающих в такие области.
Обсуждается вопрос о том, может ли диффузия фотогенерированных носителей заряда из «пиксельного» пятна засветки в прилежащие области фотоприемной матрицы в сочетании с погрешностями покрытия фотоэлемента матрицы пятном быть (при заданных параметрах задачи) причиной наблюдаемого различия значений пороговых характеристик матричных ФПУ, определенных в экспериментах с однородной модулированной засветкой матрицы и в экспериментах с малым пятном засветки. Предложена схема анализа результатов Монте-Карло-расчетов фотосигнала элемента матрицы, нормированного на мощность пучка и засветку фотоэлемента, как функции размера пятна засветки. Посредством такого анализа может быть оценено различие значений порогового (минимального детектируемого) потока излучения в двух указанных случаях и влияние на него погрешности покрытия фотоэлемента пятном. Сообщается, каким образом анализ может быть распространен на случай линейчатых ФПУ с режимом временной задержки и накопления.
Проведены исследования адмиттанса МДП-структур на основе n(p)-Hg1–xCdxTe (x = 0,21–0,23), выращенного методом молекулярно-лучевой эпитаксии на подложках Si и GaAs. Изучались возможности повышения значения произведения дифференциального сопротивления области пространственного заряда на площадь полевого электрода RОПЗA путем создания приповерхностных варизонных слоев с повышенным содержанием CdTe. Установлено, что создание варизонного слоя приводит к увеличению значения RопзA в 10–200 раз для МДП-структур на основе n-Hg0,78Cd0,22Te за счет подавления процессов туннельной генерации через глубокие уровни и уменьшение тока Шокли-Рида. МДП-структуры на основе n-Hg0,78Cd0,22Te без варизонного слоя, выращенные на GaAs-подложках, имеют значения RопзA, превышающие в 10 и более раз значения аналогичного параметра для структур, выращенных на Si-подложках.
Проведены исследования влияния оптического излучения на адмиттанс МДП-структур на основе n(p)-Hg1–xCdxTe (x = 0,21–0,23), выращенного методом молекулярно-лучевой эпитаксии с приповерхностными варизонными слоями с повышенным содержанием CdTe и без таких слоев. Установлено, что освещение существенно изменяет вид полевых зависимостей емкости и приведенной проводимости в режиме инверсии для структуры с варизонным слоем. Изменение емкости МДП-структуры в режиме инверсии происходит по двум механизмам: уменьшение времени формирования инверсионного слоя, увеличение значения емкости в минимуме низкочастотной ВФХ. Приведенная проводимость МДП-структуры при освещении уменьшается на низких частотах, но возрастает на высоких частотах.
Проведены исследования структур в конфигурациях n-B(SL)-n и MI-n-B(SL)-n, сформированных на основе эпитаксиальных пленок, выращенных методом молекулярно-лучевой эпитаксии (МЛЭ) из HgCdTe со сверхрешеткой в барьерной области. Состав в поглощающем слое структур рассчитан на работу в диапазоне LWIR и составлял величину 0,22. Было изготовлено и исследовано два образца с разной архитектурой сверхрешетки. Исследование темновых токов n-B(SL)-n структур показало, что для обоих типов образцов наблюдается аномальная зависимость плотности тока от температуры с минимумом плотности тока при температурах 100–120 К. Выявлено доминирование компонент тока поверхностной утечки для обеих структур. На основании исследования адмиттанса структур MI-n-B(SL)-n показано, что характеристики исследованных структур в целом имеют вид, схожий с характеристиками МДП-структур, изготовленных на основе однородного Hg0,78Cd0,22Te.
Изучены темновые токи в средневолновых nBn-структурах на основе HgCdTe, выращенного методом молекулярно-лучевой эпитаксии на подложках из GaAs (013). Пассивация поверхности боковых стенок мезаструктур проводилась путем формирования пленок Al2O3 методом плазменного атомно-слоевого осаждения. Показано, что при составе в барьерном слое, равном 0,84, в nBn-структурах доминирует объемная компонента темнового тока. Энергия активации тока близка к ширине запрещенной зоны поглощающего слоя. Сопоставление экспериментальных результатов с эмпирической моделью Rule07 показало, что в диапазоне температур 180–300 К в изготовленных структурах реализуется диффузионное ограничение темнового тока. Из проведенных исследований следует, что молекулярно-лучевая эпитаксия HgCdTe на альтернативных подложках является перспективным способом создания униполярных барьерных детекторов для спектрального диапазона 3–5 мкм.
Разработана конструкция и изготовлены матричные ФЧЭ на основе полупроводникового твердого раствора HgCdTe на подложках из кремния форматом 640×512 элементов с шагом 25 мкм с длинноволновой границей чувствительности 5 мкм по уровню 0,5. Разработаны схема и топология, по которым изготовлены матричные мультиплексоры форматом 640512 элементов с шагом 25 мкм, обеспечивающие рабочие режимы на тактовой частоте до 10 МГц. Методом гибридной сборки на индиевых столбах изготовлено матричное ФПУ форматом 640512 элементов с шагом 25 мкм. Лучшие образцы ФПУ характеризуются следующими параметрами: средняя величина NETD < 13 мК, количество работоспособных элементов > 99,5 %.
Проведено исследование структур металл-диэлектрик-полупроводник (МДП) на основе n-HgCdTe (КРТ), выращенного методом молекулярно-лучевой эпитаксии (МЛЭ), в конфигурации NBN, предназначенных для разработки на их основе инфракрасных (ИК) детекторов с пониженными темновыми токами для MWIR и LWIR спектральных областей. Методом спектроскопии комплексной проводимости исследовано 7 типов МДП-структур. Показано, что измерения частотных зависимостей адмиттанса МДП-приборов позволяют точно определить дифференциальное сопротивление барьерной структуры. Установлено, что для одной из исследованных структур дифференциальное сопротивление определяется объемной компонентой темнового тока, а компонента поверхностной утечки не оказывает существенного влияния на измеряемый адмиттанс. Показано, что в случае решения проблемы пассивации меза-структур возможно изготовление эффективных MWIR и LWIR nBn, NBN-детекторов на основе МЛЭ HgCdTe с высокими пороговыми параметрами.