Регенеративная медицина является бурно развивающейся областью биомедицины, направленной на восстановление поврежденных тканей и органов. Перспективные направления исследований включают создание искусственных органов, разработку биоматериалов, персонализированную медицину при сердечно-сосудистых, нейродегенеративных, онкологических заболеваниях, сахарном диабете и многих других патологиях. Однако существенным препятствием на пути широкого внедрения регенеративной медицины в клиническую практику являются проблемы, связанные с иммунологическими реакциями, этическими вопросами и масштабированием технологий.
Использование стволовых клеток (СК), выделяемых ими органелл, в том числе малых внеклеточных везикул (мВВ), биологически активных соединений является альтернативным методом для лечения заболеваний, в терапии которых существующие традиционные методы лечения малоэффективны. Клеточная терапия на основе мезенхимальных, эмбриональных, нейральных и индуцированных плюрипотентных стволовых клеток рассматривается как перспективный подход в лечении нейродегенеративных заболеваний, распространенность которых растет в связи с увеличением продолжительности жизни населения. Интерес к трансплантации мВВ объясняется не только их малыми размерами по сравнению с клетками, что облегчает их распространение в организме реципиента, но и сходством эффектов с действием материнских клеток. В данном обзоре приведены экспериментальные данные по анализу использования СК и их продуктов для терапии и профилактики нейродегенеративных заболеваний.
Идентификаторы и классификаторы
- SCI
- Биология
Интерес к регенеративной медицине, в том числе к клеточной терапии, в лечении нейродегенеративных заболеваний растет, что обусловлено как недостаточно эффективным лечением этих заболеваний, так и увеличением их распространенности, связанной с увеличением продолжительности жизни населения [1]. К основным нейродегенеративным заболеваниям относят болезнь Альцгеймера (БА), болезнь Паркинсона и боковой амиотрофический склероз [1, 2]. При БА наблюдается значительное ухудшение памяти на фоне гибели нейронов, белокпредшественник бета-амилоида расщепляется специфическими ферментами с образованием изоформ, которые агрегируют с образованием нейротоксичных олигомеров, повреждающих мембраны нейральных клеток, что приводит к когнитивным нарушениям. В процессе старения организма клетки микроглии, астроциты и олигодендроциты формируют в мозге очаги воспаления, что способствует развитию БА [3].
Список литературы
1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204-1222. DOI: 10.1016/S0140-6736(20)30925-9
2. Babcock KR, Page JS, Fallon JR, Webb AE. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Rep. 2021;16(4):681-693. DOI: 10.1016/j.stemcr.2021.01.019
3. Wang C, Zong S, Cui X, Wang X, Wu S, Wang L, et al. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front Immunol. 2023;14:1117172. DOI: 10.3389/fimmu.2023.1117172 EDN: ROCGBA
4. Moreno-Jiménez EP, Flor-Garria M, Terreros-Roncal J, Rabano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25(4):554-560. DOI: 10.1038/s41591-019-0375-9
5. Flor-Garria M, Terreros-Roncal J, Moreno-Jiménez EP, Âvila J, Rabano A, Llorens-Martm M.Unraveling human adult hippocampal neurogenesis. Nat Protoc. 2020;15(2):668-693. DOI: 10.1038/s41596-019-0267-y
6. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397(10291):2284-2303. DOI: 10.1016/S0140-6736(21)00218-X
7. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400(10360):1363-1380. DOI: 10.1016/S0140-6736(22)01272-7
8. Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal Stem Cells. in regenerative medicine. World J Stem Cells. 2024;16(4):410-433. DOI: 10.4252/wjsc.v16.i4.410
9. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577-1590. 10.1016/S0140-6736(20) 32205-4. DOI: 10.1016/S0140-6736(20)32205-4
10. Sehar U, Rawat P, Reddy AP, Kopel J, Reddy PH. Amyloid beta in aging and Alzheimer’s disease.Int J Mol Sci. 2022;23(21):12924. DOI: 10.3390/ijms232112924
11. Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, San Luciano M, Tanner C. The epidemiology of Parkinson’s disease. Lancet. 2024;403(10423):283-292. DOI: 10.1016/S01406736(23)01419-8
12. Poltavtseva RA, Nikonova YA, Selezneva II, Yaroslavtseva AK, Stepanenko VN, Esipov RS, et al. Mesenchymal Stem Cells. from human dental pulp: isolation, characteristics, and potencies of targeted differentiation. Bull Exp Biol Med. 2014;158(1):164-169. DOI: 10.1007/s10517-014-2714-7
13. Bhatt A, Bhardwaj H, Srivastava P. Mesenchymal stem cell therapy for Alzheimer’s disease: a novel therapeutic approach for neurodegenerative diseases. Neuroscience. 2024;555:52-68. DOI: 10.1016/j.neuroscience.2024.07.019 E
14. Isakovic J, Serer K, Barisic B, Mitrecic D. Mesenchymal stem cell therapy for neurological disorders: the light or the dark side of the force? Front Bioeng Biotechnol. 2023;11:1139359. DOI: 10.3389/fbioe.2023.1139359
15. Hunt JS, Fishback JL, Andrews GK, Wood GW. Expression of class I HLA genes by trophoblast cells. Analysis by in situ hybridization. J Immunol. 1988;140(4):1293-1299.
16. Poltavtseva RA, Poltavtsev AV, Lutsenko GV, Svirshchevskaya EV. Myths, reality and future of mesenchymal stem cell therapy. Cell Tissue Res. 2019;375(3):563-574. DOI: 10.1007/s00441018-2961-4
17. Chin SP, Marzuki M, Tai L, Mohamed Shahrehan NA, Ricky C, Fanty A, et al. Dynamic tracking of human umbilical cord mesenchymal Stem Cells. (hUC-MSCs) following intravenous administration in mice model. Regen Ther. 2024;25:273-283. DOI: 10.1016/j.reth.2024.01.003
18. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19(1):61-74. DOI: 10.1016/j.jcyt.2016.09.010
19. Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I, et al. Is the intra-vascular administration of mesenchymal Stem Cells. safe? Mesenchymal Stem Cells. and intravital microscopy. Microvasc Res. 2009;77(3):370-376. DOI: 10.1016/j.mvr.2009.02.001
20. Glassberg MK, Minkiewicz J, Toonkel RL, Simonet ES, Rubio GA, DiFede D, et al. Allogeneic human mesenchymal Stem Cells. in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): a phase I safety clinical trial. Chest. 2017;151(5):971-981. DOI: 10.1016/j.chest.2016.10.061
21. Packham DK, Fraser IR, Kerr PG, Segal KR. Allogeneic mesenchymal precursor cells (MPC) in diabetic nephropathy: a randomized, placebo-controlled, dose escalation study. EBio-Medicine. 2016;12:263-269. DOI: 10.1016/j.ebiom.2016.09.011
22. Skyler JS, Fonseca VA, Segal KR, Rosenstock J; MSB-DM003 Investigators. Allogeneic mesenchymal precursor cells in type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study. Diabetes Care. 2015;38(9):1742-1749. DOI: 10.2337/dc14-2830
23. De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells. 2016;8(3):73-87. DOI: 10.4252/wjsc.v8.i3.73
24. Patel AN, Henry TD, Quyyumi AA, Schaer GL, Anderson RD, Toma C, et al.; ixCELL-DCM Investigators. Ixmyelocel-T for patients with ischaemicheartfailure: a prospectiverandomised double-blind trial. Lancet. 2016;387(10036):2412-2421. 10.1016/S0140-6736(16)30137-4. Erratum in: Lancet. 2016 Jun 11;387(10036):2382. 10.1016/S0140-6736(16)30739-5. DOI: 10.1016/S0140-6736(16)30137-4.Erratumin
25. See F, Seki T, Psaltis PJ, Sondermeijer HP, Gronthos S, Zannettino AC, et al. Therapeutic effects of human STRO-3-selected mesenchymal precursor cells and their soluble factors in experimental myocardial ischemia. J Cell Mol Med. 2011;15(10):2117-2129. DOI: 10.1111/j.15824934.2010.01241.x
26. Gronthos S, Fitter S, Diamond P, Simmons PJ, Itescu S, Zannettino AC. A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells. Stem Cells. Dev. 2007 Dec;16(6):953-963. DOI: 10.1089/scd.2007.0069
27. Matas J, Orrego M, Amenabar D, Infante C, Tapia-Limonchi R, Cadiz MI, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells. Transl Med. 2019;8(3):215-224. DOI: 10.1002/sctm.18-0053
28. Lee WS, Kim HJ, Kim KI, Kim GB, Jin W.Intra-articular injection of autologous adipose tissue-derived mesenchymal Stem Cells. for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells. Transl Med. 2019;8(6):504-511. DOI: 10.1002/sctm.18-0122
29. Chung JW, Chang WH, Bang OY, Moon GJ, Kim SJ, Kim SK, et al.; STARTING-2 Collaborators. Efficacy and safety of intravenous mesenchymal Stem Cells. for ischemic stroke. Neurology. 2021;96(7):e1012-e1023. DOI: 10.1212/WNL.0000000000011440
30. Shi M, Li YY, Xu RN, Meng FP, Yu SJ, Fu JL, et al. Mesenchymal stem cell therapy in decompensated liver cirrhosis: a long-term follow-up analysis of the randomized controlled clinical trial. Hepatol Int. 2021;15(6):1431-1341. DOI: 10.1007/s12072-021-10199-2
31. Petrou P, Kassis I, Levin N, Paul F, Backner Y, Benoliel T, et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain. 2020;143(12):3574-2588. DOI: 10.1093/brain/awaa333
32. Cudkowicz ME, Lindborg SR, Goyal NA, Miller RG, Burford MJ, Berry JD, et al. A randomized placebo-controlled phase 3 study of mesenchymal Stem Cells. induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis. Muscle Nerve. 2022 Mar;65(3):291-302. 10.1002/mus.27472. Erratum in: Muscle Nerve. 2022;66(4):E26-E27. 10.1002/mus.27697. DOI: 10.1002/mus.27472.Erratumin
33. Brody M, Agronin M, Herskowitz BJ, Bookheimer SY, Small GW, Hitchinson B, et al. Results and insights from a phase I clinical trial of Lomecel-B for Alzheimer’s disease. Alzheimers Dement. 2023;19(1):261-273. DOI: 10.1002/alz.12651
34. Kim HJ, Cho KR, Jang H, Lee NK, Jung YH, Kim JP, et al.Intracerebroventricular injection of human umbilical cord blood mesenchymal Stem Cells. in patients with Alzheimer’s disease dementia: a phase I clinical trial. Alzheimers Res Ther. 2021;13(1):154. DOI: 10.1186/s13195-021-00897-2
35. Duma C, Kopyov O, Kopyov A, Berman M, Lander E, Elam M, et al. Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patients. Mol Biol Rep. 2019;46(5):5257-5272. DOI: 10.1007/s11033-01904983-5
36. Biglari N, Mehdizadeh A, Vafaei Mastanabad M, Gharaeikhezri MH, Gol Mohammad Pour Afrakoti L, Pourbala H, et al. Application of mesenchymal Stem Cells. (MSCs) in neurodegenerative disorders: history, findings, and prospective challenges. Pathol Res Pract. 2023;247:154541. DOI: 10.1016/j.prp.2023.154541
37. Shah S, Mansour HM, Aguilar TM, Lucke-Wold B. Mesenchymal stem cell-derived exosomes as a neuroregeneration treatment for Alzheimer’s disease. Biomedicines. 2024;12(9):2113. DOI: 10.3390/biomedicines12092113
38. Nguyen NT, Phan HT, Le PM, Nguyen LT, Do TT, Phan TT, et al. Safety and efficacy of autologous adipose tissue-derived stem cell transplantation in aging-related low-grade inflammation patients: a single-group, open-label, phase I clinical trial. Trials. 2024;25(1):309. DOI: 10.1186/s13063-024-08128-3
39. Bobkova NV, Poltavtseva RA, Samokhin AN, Sukhikh GT. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration. Bull Exp Biol Med. 2013;156(1):119-121. DOI: 10.1007/s10517-013-2293-z
40. Poltavtseva RA, Silachev DN, Pavlovich SV, Kesova MI, Yarygin KN, Lupatov AY, et al. Neuroprotective effect of mesenchymal and neural stem and progenitor cells on sensorimotor recovery after brain injury. Bull Exp Biol Med. 2012;153(4):586-590. DOI: 10.1007/s10517-0121772-y
41. Abdelrazik H. Mesenchymal Stem Cells: A Hope or a Hype? Int J Mol Sci. 2023;24(17):13218. DOI: 10.3390/ijms241713218
42. Huang Y, Bai Z, Zhang K. A new insight for stem cell therapy: apoptotic Stem Cells. as a key player. Signal Transduct Target Ther. 2022;7(1):299. DOI: 10.1038/s41392-022-01066-z
43. Fu Y, He Y, Wu D, Sui B, Jin Y, Hu X, et al. Apoptotic vesicles: emerging concepts and research progress in physiology and therapy. Life Med. 2023;2(2):lnad013. DOI: 10.1093/life-medi/lnad013
44. Maksimova A, Shevela E, Sakhno L, Tikhonova M, Ostanin A, Chernykh E. Human Macrophages Polarized by Interaction with Apoptotic Cells Produce Fibrosis-Associated Mediators and Enhance Pro-Fibrotic Activity of Dermal Fibroblasts In Vitro. Cells. 2023;12(15):1928. DOI: 10.3390/cells12151928
45. Blinova GA, Yarygin KN, Kholodenko IV. Efferocytosis as One of the Mechanisms for Realizing the Therapeutic Effects of Mesenchymal Stem Cells. Biomed Chem Res Methods. 2024;7(3):e00221.
46. Soufihasanabad S, Mahmoudi M, Taghavi-Farahabadi M, Mirsanei Z, Lamouki RM, Ab-dalla JKM, et al. In vivo polarization of M2 macrophages by mesenchymal stem cell-derived extracellular vesicles: a novel approach to macrophage polarization and its potential in treating inflammatory diseases. Med Hypotheses. 2024;187:111353.
47. Schrodt MV, Behan-Bush RM, Liszewski JN, Humpal-Pash ME, Boland LK, Scroggins SM, et al. Efferocytosis of viable versus heat-inactivated MSC induces human monocytes to distinct immunosuppressive phenotypes. Stem Cell Res Ther. 2023;14(1):206. DOI: 10.1186/s13287-023-03443-z
48. Lötvall J, Hill AF, Hochberg F, Buzâs EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. DOI: 10.3402/jev.v3.26913
49. Zhdanova DY, Bobkova NV, Chaplygina AV, Svirshchevskaya EV, Poltavtseva RA, Vodennikova AA, Chernyshev VS, Sukhikh GT. Effect of Small Extracellular Vesicles Produced by Mesenchymal Stem Cells. on 5xFAD Mice Hippocampal Cultures.Int J Mol Sci. 2025;26(9):4026. DOI: 10.3390/ijms26094026
50. Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9(1):17. DOI: 10.1038/s41392-023-01704-0
51. Zhdanova DY, Poltavtseva RA, Svirshchevskaya EV, Bobkova NV. Effect of Intranasal Administration of Multipotent Mesenchymal Stromal Cell Exosomes on Memory of Mice in Alzheimer’s Disease Model. Bull Exp Biol Med. 2021;170(4):575-582. DOI: 10.1007/s10517021-05109-3
52. Chernyshev VS, Chuprov-Netochin RN, Tsydenzhapova E, Svirshchevskaya EV, Poltavtseva RA, Merdalimova A, et al. Asymmetric depth-filtration: A versatile and scalable method for high-yield isolation of extracellular vesicles with low contamination. J Extracell Vesicles. 2022;11(8):e12256. DOI: 10.1002/jev2.12256
53. Pan R, Chen D, Hou L, Hu R, Jiao Z. Small extracellular vesicles: a novel drug delivery system for neurodegenerative disorders. Front Aging Neurosci. 2023;15:1184435. DOI: 10.3389/fnagi.2023.1184435
54. Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics. 2021;11(18):8926-8944. DOI: 10.7150/thno.62330
55. Cui GH, Guo HD, Li H, Zhai Y, Gong ZB, Wu J, et al. RVG-modified exosomes derived from mesenchymal Stem Cells. rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun Ageing. 2019;16:10. DOI: 10.1186/s12979-019-0150-2
56. Peng H, Li Y, Ji W, Zhao R, Lu Z, Shen J, et al.Intranasal Administration of Self-Oriented Nanocarriers Based on Therapeutic Exosomes for Synergistic Treatment of Parkinson’s Disease. ACS Nano. 2022;16(1):869-884. DOI: 10.1021/acsnano.1c08473
57. Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, et al. Milk-derived exosomes fororal delivery ofpaclitaxel. Nanomedicine. 2017;13(5):1627-1636. DOI: 10.1016/j.nano.2017.03.001
58. Chu M, Wang H, Bian L, Huang J, Wu D, Zhang R, et al. Nebulization Therapy with Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes for COVID-19 Pneumonia. Stem Cell Rev Rep. 2022;18(6):2152-2163. DOI: 10.1007/s12015-022-10398-w
59. Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020;27(1):585-598. DOI: 10.1080/10717544.2020.1748758
60. Parada N, Romero-Trujillo A, Georges N, Alcayaga-Miranda F. Camouflage strategies for therapeutic exosomes evasion from phagocytosis. J Adv Res. 2021;31:61-74. DOI: 10.1016/j.jare.2021.01.001
61. Shi MM, Yang QY, Monsel A, Yan JY, Dai CX, Zhao JY, et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. J Extracell Vesicles. 2021;10(10):e12134. DOI: 10.1002/jev2.12134
62. Dong X. Current Strategies for Brain Drug Delivery. Theranostics. 2018;8(6):1481-93. DOI: 10.7150/thno.21254
63. Goncalves K, Przyborski S. The utility of Stem Cells. for neural regeneration. Brain Neurosci Adv. 2018;2:2398212818818071.
64. Behrstock S, Ebert AD, Klein S, Schmitt M, Moore JM, Svendsen CN, et al. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF. Cell Transplant. 2008;17(7):753-762. PMID: 19044202. DOI: 10.3727/096368908786516819. PMID: 19044202
65. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, et al. Neural Stem Cells. improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA. 2009;106(32):13594-13599. DOI: 10.1073/pnas.0901402106
66. Chaplygina AV, Zhdanova DY, Kovalev VI, Poltavtseva RA, Medvinskaya NI, Bobkova NV. Cell therapy as a way to correct impaired neurogenesis in the adult brain in a model of Alzheimer’s disease. J Evol Biochem Physiol. 2022;58(1):117-137.
67. Kim S, Chang KA, Kim JA, Park HG, Ra JC, Kim HS, et al. The preventive and therapeutic effects of intravenous human adipose-derived Stem Cells. in Alzheimer’s disease mice. PLoS One. 2012;7(9):e45757. DOI: 10.1371/journal.pone.0045757
68. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA, et al. Mesenchymal Stem Cells. for the treatment of neurodegenerative disease. Regen Med. 2010;5(6):933-946. DOI: 10.2217/rme.10.72
69. Xin D, Li T, Chu X, Ke H, Liu D, Wang Z, et al. MSCs-extracellular vesicles attenuated neuroinflammation, synapse damage and microglial phagocytosis after hypoxia-ischemia injury by preventing osteopontin expression. Pharmacol Res. 2021;164:105322. DOI: 10.1016/j.phrs.2020.105322
70. Nair S, Rocha-Ferreira E, Fleiss B, Nijboer CH, Gressens P, Mallard C, et al. Neuroprotection offered by mesenchymal Stem Cells. in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. J Neurochem. 2021;158(1):59-73. DOI: 10.1111/jnc.15267
71. Bruno S, Kholia S, Deregibus MC, Camussi G. The Role of Extracellular Vesicles as Paracrine Effectors in Stem Cell-Based Therapies. Adv Exp Med Biol. 2019;1201:175-193. DOI: 10.1007/978-3-030-31206-0_9
72. Yin K, Wang S, Zhao RC. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark Res. 2019;7:8. DOI: 10.1186/s40364-019-0159-x
73. Kim DH, Lee D, Lim H, Choi SJ, Oh W, Yang YS, et al. Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal Stem Cells. on amyloid beta levels in in vitro and in vivo models of Alzheimer’s disease. Biochem Biophys Res Commun. 2018;504(4):933-940. DOI: 10.1016/j.bbrc.2018.09.012
74. Qin C, Lu Y, Wang K, Bai L, Shi G, Huang Y, et al. Transplantation of bone marrow mesenchymal Stem Cells. improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: a meta-analytic review on potential mechanisms. Transl Neurodegener. 2020;9(1):20. DOI: 10.1186/s40035-020-00199-x
75. Yang H, Xie Z, Wei L, Yang H, Yang S, Zhu Z, et al. Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AßPP/PS1 transgenic mouse model. Stem Cell Res Ther. 2013;4(4):76. DOI: 10.1186/scrt227
76. Hernandez AE, Garda E. Mesenchymal Stem Cell Therapy for Alzheimer’s Disease. Stem Cells.Int. 2021;2021:7834421. DOI: 10.1155/2021/7834421
77. de Godoy MA, Saraiva LM, de Carvalho LRP, Vasconcelos-Dos-Santos A, Beiral HJV, Ramos AB, et al. Mesenchymal Stem Cells. and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-ß oligomers. J Biol Chem. 2018;293(6):1957-1975. DOI: 10.1074/jbc.M117.807180
78. Carp DM, Liang Y. Universal or Personalized Mesenchymal Stem Cell Therapies: Impact of Age, Sex, and Biological Source. Cells. 2022;11(13):2077-2091. DOI: 10.3390/cells11132077
79. Ramkisoensing AA, Pijnappels DA, Swildens J, Goumans MJ, Fibbe WE, Schalij MJ, et al. Gap junctional coupling with cardiomyocytes is necessary but not sufficient for cardiomyogenic differentiation of cocultured human mesenchymal stem cells. Stem Cells. 2012;30(6):1236-1245. DOI: 10.1002/stem.1086
80. Matuskova M, Hlubinova K, Pastorakova A, Hunakova L, Altanerova V, Altaner C, et al. HSV-tk expressing mesenchymal Stem Cells. exert bystander effect on human glioblastoma cells. Cancer Lett. 2010;290(1):58-67. DOI: 10.1016/j.canlet.2009.08.028
81. Kikuchi-Taura A, Okinaka Y, Saino O, Takeuchi Y, Ogawa Y, Kimura T, et al. Gap junction-mediated cell-cell interaction between transplanted mesenchymal Stem Cells. and vascular endothelium in stroke. Stem Cells. 2021;39(7):904-912. DOI: 10.1002/stem.3360
82. Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016;7(1):125. DOI: 10.1186/s13287-016-0363-7
83. Skok M. Mesenchymal Stem Cells. as a potential therapeutic tool to cure cognitive impairment caused by neuroinflammation. World J Stem Cells. 2021;13(8):1072-1083.
84. Poltavtseva RA, Samokhin AN, Bobkova NV, Alexandrova MA, Sukhikh GT. Effect of Transplantation of Neural Stem and Progenitor Cells on Memory in Animals with Alzheimer’s Type Neurodegeneration. Bull Exp Biol Med. 2020;168(4):589-596. DOI: 10.1007/s10517-02004758-0
85. Yun HM, Kim HS, Park KR, Shin JM, Kang AR, Lee KI, et al. Placenta-derived mesenchymal Stem Cells. improve memory dysfunction in an Aß1-42-infused mouse model of Alzheimer’s disease. Cell Death Dis. 2013;4(12):e958. DOI: 10.1038/cddis.2013.490
86. Bagheri-Mohammadi S. Microglia in Alzheimer’s Disease: The Role of Stem Cell-Microglia Interaction in Brain Homeostasis. Neurochem Res. 2021;46(2):141-148. DOI: 10.1007/s11064020-03162-4
87. Chaplygina AV, Zhdanova DY, Kovalev VI, Poltavtseva RA, Bobkova NV.Interaction of mesenchymal stromal cells from Wharton’s jelly of the umbilical cord with primary culture of hippocampal cells of 5xfad mice under various cultivation types [Article in Russian]. Biol Membr. 2023;40(3):217-232.
88. Panchenko MM, Poltavtseva RA, Bobkova NV, Velmeshev DV, Nesterova IV, Samokhin AN, et al. Localization and differentiation pattern of transplanted human multipotent mesenchymal stromal cells in the brain of bulbectomized mice. Bull Exp Biol Med. 2014;158(1):118-122. DOI: 10.1007/s10517-014-2706-7
89. Bobkova NV, Lyabin DN, Medvinskaya NI, Samokhin AN, Nekrasov PV, Nesterova IV, et al. The Y-Box Binding Protein 1 Suppresses Alzheimer’s Disease Progression in Two Animal Models. PLoS One. 2015;10(9):e0138867. DOI: 10.1371/journal.pone.0138867
90. Evgen’ev M, Bobkova N, Krasnov G, Garbuz D, Funikov S, Kudryavtseva A, et al. The Effect of Human HSP70 Administration on a Mouse Model of Alzheimer’s Disease Strongly Depends on Transgenicity and Age. J Alzheimers Dis. 2019;67(4):1391-1404. DOI: 10.3233/JAD-180987
91. Zhang Y, Zhang Y, Chopp M, Pang H, Zhang ZG, Mahmood A, et al. MiR-17-92 Cluster-Enriched Exosomes Derived from Human Bone Marrow Mesenchymal Stromal Cells Improve Tissue and Functional Recovery in Rats after Traumatic Brain Injury. J Neurotrauma. 2021;38(11):1535-1550. DOI: 10.1089/neu.2020.7575
92. Reza-Zaldivar EE, Hernândez-Sapiéns MA, Gutiérrez-Mercado YK, Sandoval-Âvila S, Gomez-Pinedo U, Mârquez-Aguirre AL, et al. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen Res. 2019;14(9):1626-1634. DOI: 10.4103/1673-5374.255978
93. Reza-Zaldivar EE, Hernândez-Sapiéns MA, Minjarez B, Gutiérrez-Mercado YK, Mârquez Aguirre AL, Canales-Aguirre AA. Potential Effects of MSC-Derived Exosomes in Neuroplasticity in Alzheimer’s Disease. Front Cell Neurosci. 2018;12:317. DOI: 10.3389/fncel.2018.00317
94. Bodart-Santos V, de Carvalho LRP, de Godoy MA, Batista AF, Saraiva LM, Lima LG, et al. Extracellular vesicles derived from human Wharton’s jelly mesenchymal Stem Cells. protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-ß oligomers. Stem Cell Res Ther. 2019;10(1):332. DOI: 10.1186/s13287-019-1432-5
95. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12(18):18274-18296. DOI: 10.18632/aging.103692
96. Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, et al. Human adipose tissue-derived mesenchymal Stem Cells. secrete functional neprilysin-bound exosomes. Sci Rep. 2013;3:1197. DOI: 10.1038/srep01197
97. Huang SM, Mouri A, Kokubo H, Nakajima R, Suemoto T, Higuchi M, et al. Neprilysinsen-sitive synapse-associated amyloid-beta peptide oligomers impair neuronal plasticity and cognitive function. J Biol Chem. 2006;281(26):17941-17951. DOI: 10.1074/jbc.M601372200
98. Chen YA, Lu CH, Ke CC, Chiu SJ, Jeng FS, Chang CW, et al. Mesenchymal Stem Cell-Derived Exosomes Ameliorate Alzheimer’s Disease Pathology and Improve Cognitive Deficits. Biomedicines. 2021;9(6):594. DOI: 10.3390/biomedicines9060594
99. Elia CA, Losurdo M, Malosio ML, Coco S. Extracellular Vesicles from Mesenchymal Stem Cells. Exert Pleiotropic Effects on Amyloid-ß, Inflammation, and Regeneration: A Spark of Hope for Alzheimer’s Disease from Tiny Structures? Bioessays. 2019;41(4):e1800199. DOI: 10.1002/bies.201800199
100. Yuyama K, Sun H, Sakai S, et al. Decreased amyloid-ß pathologiesby intracerebralloading ofglycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem. 2014;289(35):24488-24498. DOI: 10.1074/jbc.M114.577213
101. Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711-1715. DOI: 10.1038/jcbfm.2013.152
102. Avetisyan AV, et al. Functional impairment of the mitochondria of the neocortex and hippocampus in mice with bulbectomy - model of Alzheimer’s disease. Biochemistry (Mosc). 2016;81(6):802-8012.
103. Choi DS, Kim DK, Kim YK, et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 2013;13(10-11):1554-15571. DOI: 10.1002/pmic.201200329
104. Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(9):2439-59. DOI: 10.7150/thno.31017
105. Paşca AM, Sloan SA, Clarke LE, et al. Functional cortical neurons and astrocytes from human pluripotent Stem Cells. in 3D culture. Nat Methods. 2015;12(7):671-678. DOI: 10.1038/nmeth.3415
106. Wilson MN, Thunemann M, Liu X, et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat Commun. 2022;13(1):7945. DOI: 10.1038/s41467-022-35536-3
107. Aleksandrova MA, Poltavtseva RA, Marei MV, et al. Analysis of neural Stem Cells. from human cortical brain structures in vitro. Bull Exp Biol Med. 2016;161(1):197-208. DOI: 10.1007/s10517-016-3375-5
108. Poltavtseva RA, Marei MV, Dubrovina IV, et al. Development and differentiation of multipotent human neural cells in vitro. Dokl Biochem Biophys. 2001;379:304-308. :1011675407770. DOI: 10.1023/a
109. Leone MA, Gelati M, Profico DC, et al. Phase I clinical trial of intracerebroventricular transplantation of allogeneic neural Stem Cells. in people with progressive multiple sclerosis. Cell Stem Cell.2023;30(12):1597-1609. DOI: 10.1016/j.stem.2023.11.001
110. Müller-Ruchholtz W, Leyhausen G, Petersen P, et al. A simple methodological principle for large scale extraction and purification of collagenase-digested islets. Transplant Proc. 1987;19(1 Pt 2):911-915.
111. Winoto-Morbach S, Ulrichs K, Hering BJ, et al. Lectins for electromagnetic purification of islets from humans and large mammals. Horm Metab Res Suppl. 1990;25:51-54.
112. Cooper DKC, Mou L, Bottino R. A brief review of the current status of pig islet xenotransplantation. Front Immunol. 2024;15:1366530. DOI: 10.3389/fimmu.2024.1366530
113. Wang S, Du Y, Zhang B, et al. Transplantation of chemically induced pluripotent stemcell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell. 2024;187(22):6152-6164. DOI: 10.1016/j.cell.2024.09.004 EDN: JGTKNV
114. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in threedimensional culture. Nature. 2011;472(7341):51-56. DOI: 10.1038/nature09941
115. Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-379. DOI: 10.1038/nature12517
116. Hendriks D, Pagliaro A, Andreatta F, et al. Human fetal brain self-organizes into long-term expanding organoids. Cell. 2024;187(3):712-732. DOI: 10.1016/j.cell.2023.12.012
117. Jgamadze D, Lim JT, Zhang Z, et al. Structural and functional integration of human forebrain organoids with the injured adult rat visual system. Cell Stem Cell. 2023;30(2):137-152. DOI: 10.1016/j.stem.2023.01.004
118. Cao SY, Yang D, Huang ZQ, et al. Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke. NPJ Regen Med. 2023;8(1):27. DOI: 10.1038/s41536-023-00301-7
119. Abbott A. Stem Cells. head to the clinic: treatments for cancer, diabetes and Parkinson’s disease could soon be here. Nature. 2025;637(8044):18-20.
Выпуск
Другие статьи выпуска
Формирование тканевого эквивалента на основе инъекционной формы микродисперсного скаффолда — микрочастиц децеллюляризованного хряща свиньи (ДецХс) — представляется перспективной технологией для восстановления дефектов хрящевой ткани. Целью данной работы было получение и сравнительное исследование тканеинженерной конструкции (ТИК) на основе микрочастиц ДецХс и мезенхимальных стромальных клеток (МСК) в статических условиях и в перфузионном биореакторе. Материалы и методы. Процесс децеллюляризации включал циклы замораживания и оттаивания (-196…+37 °C), использование поверхностно-активных веществ (Triton X-100 и додецилсульфат натрия), а также обработку ДНКазой. Морфология поверхности и ближайшего подповерхностного слоя образцов была исследована с помощью сканирующей электронной микроскопии. Каждая ТИК состояла из 5×105 МСК и 5 мг ДецХс. Результаты. Установлено, что по сравнению со статическими условиями культивирование МСК на микрочастицах ДецХс в перфузионном биореакторе в течение 14 суток позволяет увеличить пролиферативную активность клеток с последующей хондрогенной дифференцировкой, о чем говорит способность клеточной компоненты ТИК синтезировать внеклеточный матрикс (ВКМ), гистохимический анализ которого выявил наличие коллагена и гликозаминогликанов (ГАГ). Заключение. Показана возможность формирования ТИК хряща на основе ДецХс и МСК в условиях 3D-культивирования как в статических условиях, так и в перфузионном биореакторе. Культивирование МСК на ДецХс в условиях потока при скорости 1 мм/мин способствовало увеличению пролиферативной активности клеток по сравнению со статическими условиями, а также поддерживало способность клеток синтезировать ВКМ, гистохимический анализ которого выявил наличие общего коллагена и ГАГ, что может являться подтверждением хондрогенной дифференцировки МСК.
В данной работе мы исследовали изменения гормональной регуляции стволовых клеток жировой ткани человека при старении и то, как эти изменения ассоциированы с адипогенной дифференцировкой этих клеток. В качестве объекта изучения гормональной регуляции использовали постнатальные стволовые клетки жировой ткани — мультипотентные мезенхимные стромальные клетки (МСК). Мы показали, что как МСК с индуцированным репликативным старением, так и МСК, полученные от пожилых доноров, обладают сниженным адипогенным потенциалом, также у этих клеток нарушены механизмы регуляции адипогенной дифференцировки при действии норадреналина и серотонина. Изучение внутриклеточных сигнальных каскадов позволило установить, что при старении в МСК проявляется пониженная активация как цАМФ-зависимых, так и фосфоинозитид/ кальций-зависимых сигнальных каскадов. Кальциевые ответы на стимуляцию норадреналином и серотонином оказались отложенными во времени в МСК с индуцированным репликативным старением. Таким образом, старение приводит к снижению регуляторного воздействия гормонов-регуляторов на адипогенную дифференцировку МСК человека.
T-кадгерин (также в литературе используются названия cadherin 13, H-cadherin ( heart) и белок, кодируемый геном CDH13) является многофункциональным белком, играющим ключевую роль в регуляции метаболизма, адипогенеза и канцерогенеза. В обзоре приведены и сформулированы современные представления о структуре и функциях T-кадгерина, его взаимодействии с лигандами, адипонектином и липопротеинами низкой плотности (ЛНП). Особое внимание уделено анализу роли T-кадгерина в адипогенной дифференцировке мезенхимальных стромальных/стволовых клеток (МСК), а также влиянию T-кадгерина на процессы накопления липидов и поддержания метаболического гомеостаза. Высказано предположение о том, что T-кадгерин может выступать в качестве сенсора метаболических сигналов, регулируя баланс между адипогенезом и активацией стволовых/прогениторных клеток, что важно для поддержания клеточного гомеостаза жировой ткани.
В контексте онкологических заболеваний T-кадгерин функционирует как потенциальный опухолевый супрессор. Потеря экспрессии T-кадгерина характерна для многих типов рака, включая рак молочной железы, легких и колоректальный рак. Снижение уровня T-кадгерина может быть связано с гиперметилированием промотора гена CDH13 или потерей гетерозиготности. T-кадгерин может также опосредовать защитное действие адипонектина, который обладает онкосупрессивными свойствами. Нарушение баланса между адипонектином и ЛНП при ожирении и метаболическом синдроме может способствовать развитию онкологических заболеваний.
Таким образом, T-кадгерин может опосредовать взаимосвязь процессов ожирения и канцерогенеза. Способность T-кадгерина регулировать адипогенез и взаимодействовать с лигандами, влияющими на метаболизм в целом, делает его перспективной мишенью для дальнейших исследований. Понимание молекулярных механизмов участия T-кадгерина в этих процессах может открыть новые подходы к лечению ожирения и связанных с ним онкологических заболеваний.
На протяжении всей жизни клеточные компоненты тканей и органов нуждаются в своевременном обновлении и восстановлении после серьезных повреждений. Эту функцию выполняют стволовые клетки, которые во взрослом организме регулируются специфическим микроокружением, называемым нишей стволовых клеток. Нарушение функции ниши может приводить к утрате целостности и дисфункции ткани. Показано, однако, что ниша стволовой клетки способна к частичному восстановлению. Значительный вклад в этот процесс вносят мультипотентные мезенхимные стволовые/стромальные клетки (МСК), которые обнаружены в различных нишах тканеспецифичных стволовых клеток, где они участвуют в поддержании и восстановлении поврежденных ниш, предположительно за счет секреции широкого спектра факторов, комплекс которых называется секретомом, вовлеченных в регуляцию репарации и регенерации тканей. Использование секретома клеток, в частности МСК, в качестве продуктов для регенеративной медицины лежит в основе активно развивающегося нового направления клеточной терапии, так называемой «клеточной терапии без клеток» (cell-free cell therapy).
Недавно в РФ было впервые инициировано регуляторное клиническое исследование оригинального биологического лекарственного препарата «МедиРег»® на основе секретома МСК человека, разработанного и произведенного в МГУ имени М. В. Ломоносова, который предназначен для лечения тяжелых нарушений сперматогенеза за счет стимуляции восстановления поврежденной ниши сперматогониальных стволовых клеток. В данном коротком сообщении на примере препарата «МедиРег»® обсуждаются ключевые особенности разработки и доклинических исследований биологических препаратов на основе секретома МСК человека и перспективы их трансляции в клиническую практику.
Издательство
- Издательство
- ОБЩЕСТВО РЕГЕНЕРАТИВНОЙ МЕДИЦИНЫ
- Регион
- Россия, Москва
- Почтовый адрес
- 119991, г. Москва, Ломоносовский проспект, д.27, корп.1
- Юр. адрес
- 119234, г Москва, р-н Раменки, Ломоносовский пр-кт, д 27 к 1
- ФИО
- Ткачук Всеволод Арсеньевич (ПРЕЗИДЕНТ)
- Контактный телефон
- +7 (___) _______