Приводится сравнение моделей сегментации для решения задачи выявления лесных рубок в зимний период по паре космических снимков Sentinel-2. В сравнение попали модели, основанные на свёрточных нейронных сетях из библиотеки segmentation models, разработанной для языка программирования Python. В качестве данных для обучения моделей использовались снимки с 2018 по 2022 г. из открытых источников Европейского космического агентства, которые были сделаны над территорией Ханты-Мансийского автономного округа Югры. Данные снимки были предобработаны для решения задач: проведения атмосферной коррекции снимков, приведения пар снимков к единой проекции, нарезки снимков на кадры. Маски лесных рубок формировались вручную с 2015 г. в центре космических услуг Югорского научноисследовательского института информационных технологий. Для оценки качества моделей использовалась F1-мера, так как требуется оценить, находит ли модель все рубки, насколько точно модель находит рубки, а также F1-мера позволяет учесть ложные срабатывания модели. Лучший результат показала модель UNet++ с оценкой 0.847. Остальные рассмотренные модели показали близкий результат, что говорит о схожести данных моделей применительно к задачам сегментации лесных рубок.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.