Решается задача построения суррогатной модели для быстрого вычисления оценок переобучения семейства пороговых решающих правил. Описан процесс сбора обучающей выборки для модели, которая состоит из пар <объект, ответ>, и каждым объектом является семейство пороговых решающих правил, ответом - оценка обобщающей способности семейства. На основе имеющихся исследований оценок обобщающей способности, проведённых в рамках комбинаторной теории переобучения, сформирован перечень признаков, которые описывают объекты выборки. Рассмотрены модели различной структуры, наилучшей по результатам тестирования выбрана модель нейронной сети с точностью 2.8 %. По итогам анализа значимости признаков показано, что при построении оценок переобучения недостаточно учитывать только количество классификаторов и минимальное число ошибок классификаторов, необходимо использовать внутреннюю структуру семейства (расслоение по числу ошибок) и взаимосвязь между классификаторами (связность). Полученную модель можно использовать в задачах отбора признаков при построении деревьев решений, нейронных сетей и в алгоритмах бустинга для контроля переобучения.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.