Архив статей журнала
В банаховом пространстве исследуется линейная обратная задача для абстрактного дифференциального уравнения второго порядка. Неоднородное вложение в уравнении считается стационарным и неизвестным. В начальный момент времени заданы стандартные условия Коши. В последний момент времени добавлено новое условие - значение второй производной от основной эволюционной функции, т. е. е. порядок производной в конечной величине соответствует порядку уравнений. Для поставленной задачи получены критерии единственности решения, выраженные в спектральных терминах. Указано достаточное условие невозможности решения. Рассмотрен пример уравнения Пуассона в круглой области.