Разработана математическая модель, позволяющая экспериментально реализовать метод измерения спектральной чувствительности ИК ФЧЭ, использующий модель черного тела (МЧТ) и систему регистрации сигналов ИК МФПУ. Построена теоретическая модель расчета спектральной чувствительности и проведено исследование корректности метода.
Рассмотрен метод установки заданной облученности, создаваемой моделью черного тела (МЧТ) в произвольной плоскости. Метод основан на использовании нового параметра – коэффициента излучения МЧТ. Коэффициент излучения МЧТ – это отношение потоков излучения (квантового или энергетического), исходящих соответственно от излучающей площадки и от бесконечно большой излучающей плоскости с той же температурой и степенью черноты, но падающих в заданную точку параллельной плоскости. Данный параметр позволяет просто и корректно определить величину облученности в заданной точке плоскости, отстоящей от МЧТ на заданном расстоянии. МЧТ может иметь излучающую площадку с любой заданной формой, размерами, температурой и степенью черноты. Приведен вывод аналитических выражений коэффициента излучения и облученности, создаваемой МЧТ. Рассмотрены облученности, создаваемые МЧТ с круглыми и квадратными диафрагмами и распределения облученности по площади. Показано, что отличие облученностей от МЧТ с равновеликими круглой и квадратной излучающими площадками близко к одному проценту. На основе предложенного метода расчета облученности предложен метод установки заданной облученности и неоднородности облученности от МЧТ.
Проведена разработка методики контроля распределения концентрации носителей заряда по профилю многослойных гетероэпитаксиальных структур (ГЭС) с квантоворазмерной активной областью на основе гетеропары AlGaAs/GaAs, выращенных методом молекулярно-лучевой эпитаксии, средствами электрохимического вольт-фарадного профилирования (ECV). Разработана расчетная модель области пространственного заряда, формируемой на границе электролит–полупроводник. Проведен анализ ECV-профилей образцов гетеро-эпитаксиальных структур, выращенных на подложках GaAs <100>. Проведен расчет граничных значений глубины формируемой области пространственного заряда для различных концентраций носителей заряда в измеряемых слоях. Сделано заключение об ограниченности метода для контроля распределения концентрации носителей в квантоворазмерной области гетероэпитаксиальных структур.
Рассмотрен метод расчета облученности, создаваемой абсолютно черным телом (АЧТ) в произвольной плоскости, параллельной его диафрагме. Метод основан на использовании понятия «коэффициент пропускания холодной диафрагмы МФПУ», описывающего отношение потока излучения, попадающего в заданную точку плоскости сквозь диафрагму, к потоку излучения, падающему в данную точку из полусферы. Установлена полная сходимость результатов расчета величины облученности предложенным методом и единственным нормативным методом, описанным в ГОСТ 17772–88. Рассмотрены результаты расчета облученностей и нормированной разности облученностей от АЧТ с круглыми и квадратными диафрагмами в диапазоне от 0,06 мм до 20 см, и распределения облученности по площади. Показано, что облученность от АЧТ с круглой диафрагмой отличается от облученности, создаваемой АЧТ с квадратной диафрагмой такой же площади, не более, чем на один процент. Установлена полная применимость предложенного метода для расчета облученности, создаваемой АЧТ.
Созданы и исследованы матрицы ультрафиолетовых фотодиодов, чувствительные в ближнем ультрафиолетовом диапазоне спектра 0,2–0,4 мкм на основе гетероэпитаксиальных структур AlxGa1-xN (ГЭС AlGaN). ГЭС AlGaN выращивались методами осаждения из металлоорганических соединений (MOVPE) и молекулярно-лучевой эпитаксии (MBE) на сапфировых подложках. Для уменьшения структурных дефектов исследовалось состояние поверхности и приповерхностного слоя эпиполированных сапфировых подложек, отрабатывалась технология их финишной обработки. Матрицы ультрафиолетовых фотодиодов в структурах ГЭС AlGaN изготавливались методом ионного травления. Проведено моделирование составляющих темнового тока для фотодиодов на основе нитридов алюминиягаллия. Рассчитаны основные составляющие темнового тока, такие как генерационнорекомбинационный, шунтирующей утечки, прыжковой проводимости, Пула–Френкеля. Показана возможность достижения фотоэлектрических параметров на уровне лучших зарубежных аналогов.
Разработана математическая модель расчета зависимости коэффициента про-пускания эпитаксиальных слоев AlGaAs различного состава, входящих в состав многослойных гетероэпитаксиальных структур с квантоворазмерной активной областью, от длины волны излучения. Модель адаптирована под экспериментальные структуры с одним слоем AlGaAs, выращенным методом молекулярно-лучевой эпитаксии на подложке арсенида галлия. Под слои заданного состава подобрана и оптимизирована модель диэлектрической проницаемости, основанная на анализе энергетических переходов в зоне Бриллюэна соединений со структурой цинковой обманки с учетом непрямых переходов в зону проводимости. Проведенное исследование используется для оптимизации параметров эпитаксиального выращивания структур с целью уточнения характеристик матрицы фоточувствительных эле-ментов ИК-диапазона.
На основе метода матрицы переноса разработана численная модель по расчету спектров пропускания и отражения многослойных эпитаксиальных гетероструктур для спектрального диапазона, в котором отсутствует высокое поглощение в материале. Проведен численный анализ зависимостей целевой длины волны излучения, ширины стоп-зоны и величины коэффициента пропускания брэгговских зеркал от технологических параметров структуры и различных полупроводниковых материалов, используемых в оптоэлектронике. Корректность получаемых результатов была установлена из сравнения расчетных спектров пропускания с измеренными спектрами для зеркал, изготовленных на основе гетеропары Pb1-xEuxTe/EuTe с составами x < 0,1 для спектрального диапазона от 3,5 до 5 мкм. Из расчетов показано, что данные материалы обладают высоким оптическим контрастом в гетеропаре от 0,37 до 0,39, пропускание зеркал в стоп-зоне составляет менее 5 % для трех пар, для четырех пар – менее 1 %. Ширина стоп-зоны для нужного спектрального диапазона находится в пределах от 1100 см-1 до 1400 см-1.
Проведены исследования темновых токов и шумов фоточувствительных элементов (ФЧЭ) многорядных фотоприемных модулей (ФПМ) на основе гетероэпитаксиальных (ГЭС) структур HgCdTe с шагом 28 мкм средневолнового и длинноволнового ИК-диапазонов спектра при обратном напряжении смещения V = -0,1 В. Показано, что значение обнаружительной способности D* 1012 см Вт-1 Гц1/2 для ФПМ средневолнового диапазона достигается при темновых токах менее 10-11 А. Измерены зависимости фотосигнала и шума от времени накопления для ФПМ длинноволнового ИК-диапазонов спектра. Показано, что фотосигнал растет линейно в зависимости от времени накопления в диапазоне Тнак = 25–200 мкс, а шум возрастает приблизительно в 2 раз.
Разработана методика контроля спектров фотолюминесценции для многослойных гетероэпитаксиальных структур с квантовыми ямами на основе AlGaAs/GaAs, выращенных методом молекулярно-лучевой эпитаксии. Проведен расчет уровней размерного квантования в квантовых ямах. Построены тепловые карты распределения значений длины волны и интенсивности в максимуме спектра фотолюминесценции по поверхности эпитаксиальных слоев различного состава. Картографирование позволило оценить однородность распределения состава и толщины эпитаксиальных слоев по поверхности образцов. Проведенное исследование является перспективным для усовершенствования методик входного и межоперационного контроля многослойных гетероэпитаксиальных структур, используемых в технологии изготовления матричных фотоприемных устройств ИК-диапазона.
Разработана модель расчета характеристик многослойных гетероэпитаксиальных структур на основе тройных твёрдых растворов кадмий-ртуть-теллур (КРТ) из спектров отражения. Реализованная модель основана на анализе прохождения излучения через многослойную структуру с учетом как переходов между слоями, так и поглощением излучения каждым эпитаксиальным слоем. Проведен расчет характеристик эпитаксиальных слоев, входящих в состав многослойных структур КРТ, выращенных методами молекулярно-лучевой эпитаксии, жидкофазной эпитаксии и осаждением металлоорганических соединений из газовой фазы. Результаты исследования показали эффективность разработанного метода благодаря расчету состава и толщин эпитаксиальных слоев КРТ с повышенной точностью.
Исследованы морфология поверхности и спектры пропускания гетероэпитаксиаль-ных структур (ГЭС) на основе тройного раствора кадмий-ртуть-теллур (КРТ, CdHgTe), выращенных методами молекулярно-лучевой (МЛЭ) и жидкофазной эпитаксии (ЖФЭ), и предназначенных для изготовления фотоприемных устройств (ФПУ) длинноволнового ИК диапазона спектра (8–12 мкм). Исследована неоднородность спектральных характеристик чувствительности отдельных фоточувствительных элементов (ФЧЭ) в линейках многорядной матрицы, сформированной в ГЭС КРТ, выращенной методом ЖФЭ. Матрицы ФЧЭ (МФЧЭ) должны иметь малый разброс граничной длины волны и однородные спектральные характеристики чувствительности, что достигается уменьшением неоднородности мольной доли х рабочего поглощающего слоя из CdHgTe до значений менее 0,1 % по площади пластин ГЭС КРТ.
Разработан метод определения характеристик слабо нагретых объектов в плотных отражающих средах, который позволяет корректно проводить расчеты коэффициентов излучения, отражения и температур, обеспечивая поиск объектов в сложных условиях. Для расчета предложена оригинальная система уравнений, учитывающая особенности объектов и задающая распределение излучения в области наблюдения тепловизионной системы в спектральных диапазонах 3–5 и 8–12 мкм.