В статье представлен подход к созданию информационной системы на основе нейросетевой графовой архитектуры. Этот подход призван снивелировать проблему явного объяснения решений, принимаемых искусственным интеллектом — проблема прозрачности (объяснимости, надежности, доверенности). Использование технологий искусственного интеллекта в медицине носит «сквозной» характер и способствует созданию условий для улучшения эффективности и формирования принципиально новых направлений деятельности: автоматизации рутинных (повторяющихся) операций; использования автономного интеллектуального оборудования и робототехнических комплексов, интеллектуальных систем управления; повышения эффективности процессов планирования, прогнозирования и принятия врачебных решений. Перспективной технологией предлагаемого подхода является применение графовой нейросетевой архитектуры в составе информационной системы для обработки и анализа данных. В статье реализован пример классификации узлов графов на открытом датасете с кардиоданными условно-здоровых людей и пациентов.
Идентификаторы и классификаторы
В целях развития искусственного интеллекта в России указом Президента Российской Федерации от 10 октября 2019 г. № 490 утверждена Национальная стратегия развития искусственного интеллекта (ИИ) до 2030 года в Российской Федерации и стратегией определены шесть задач для регулирования, взаимодействия и развития в области ИИ — это поддержка научных исследований, разработка и развитие программного обеспечения, повышение доступности и качества данных, повышение доступности аппаратного обеспечения, повышение уровня обеспечения российского рынка технологий искусственного интеллекта квалифицированными кадрами и уровня информированности населения о возможных сферах использования таких технологий, создание комплексной системы регулирования общественных отношений.
Список литературы
1. Карпов О.Э., Андриков Д.А., Максименко В.А., Храмов А.Е. Прозрачный искусственный интеллект для медицины // Врач и информационные технологии. - 2022. - № 2. - С. 4-11.
2. Карпов О.Э., Храмов А.Е. Прогностическая медицина // Врач и информационные технологии. - 2021. - № 3. - С.20.
3. Шарова Д.Е., Михайлова А.А., Гусев А.В., Гарбук С.В., Владзимирский А.В., Васильев Ю.А. Анализ мирового опыта в регулировании использования медицинских данных для целей создания систем искусственного интеллекта на основе машинного обучения // Врач и информационные технологии. - 2022. - № 4. - С. 28-39.
4. Карпов О.Э., Храмов А.Е. Информационные технологии, вычислительные системы и искусственный интеллект в медицине. М.: ДПК Пресс, 2022.
5. Васильев Ю.А. и др. Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта: Учебное пособие. М.: Издательские решения, 2024. - 140 с.
6. Khorev VS, et al. Disruptions in segregation mechanisms in fmri-based brain functional network predict the major depressive disorder condition. Chaos, Solitons & Fractals. 2024; 188: 115566.
7. Кучин А.С., Грубов В.В., Максименко В.А., Утяшев Н.П. Автоматизированное рабочее место врача-эпилептолога с возможностью автоматического поиска приступов эпилепсии // Врач и информационные технологии. - 2021. - № 3. - С. 62-73.
8. Grubov VV, Nazarikov SI, Kurkin SA, Utyashev NP, et al. Two-stage approach with combination of outlier detection method and deep learning enhances automatic epileptic seizure detection. IEEE Access. 2024; 12: 122168-122182.
9. Wang J, Yang J, Deng J, Gunes H, Song S. Graph in Graph Neural Network. 2024. DOI: 10.48550/arXiv.2407.00696
10. Goldberger A, Amaral L, Glas, L, Hausdorff J. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23): e215-e220.
11. Gow B, Pollard T, Nathanson LA, Johnson A, Horng S. MIMIC-IV-ECG: Diagnostic Electrocardiogram Matched Subset (version 1.0). PhysioNet. 2023. DOI: 10.13026/4nqg-sb35
12. Zhong M, Li F, Chen W. Automatic arrhythmia detection with multi-lead ECG signals based on heterogeneous graph attention networks. Mathematical biosciences and engineering: MBE. 2022; 12(19): 12448-12471.
13. Brody S, Alon U, Yahav E. How Attentive are Graph Attention Networks?. 2021. DOI: 10.48550/arXiv.2105.14491
14. Kamyar Z, Marco G. Graph Neural Networks for Topological Feature Extraction in ECG Classification. Springer Nature Singapore. Singapore, 2023. P.17-27.
Выпуск
Другие статьи выпуска
В статье рассматривается процесс разработки и утверждения первого в Российской Федерации Кодекса этики применения искусственного интеллекта (ИИ) в сфере охраны здоровья. На фоне активного внедрения ИИ-технологий в медицинскую практику (зарегистрировано 39 соответствующих медицинских изделий) акцент сделан на важности формирования этических норм, обеспечивающих защиту прав пациентов, повышение доверия к технологиям и стандартизацию процессов. Проведен анализ международных подходов к этике ИИ в здравоохранении (ЕС, США, Великобритания, Канада, Австралия, Китай, Индия), и обозначена необходимость гармонизации отечественного кодекса с международными инициативами. Представлены этапы разработки документа, в которых приняли участие сотрудники профильных департаментов Минздрава России, главные внештатные специалисты и эксперты, а также структура и основные положения утвержденной версии Кодекса. Выделены ключевые принципы: прозрачность, конфиденциальность, справедливость, ограниченная автономность, контроль и ответственность. Финальная версия документа была опубликована в марте 2025 года на портале ЕГИСЗ после согласования с Межведомственной рабочей группой при Минздраве России. Кодекс призван стать фундаментом для устойчивого и безопасного внедрения ИИ в систему здравоохранения.
Работа посвящена оценке соответствия нейрофизиологических и субъективных признаков моторного воображения в контексте нейрореабилитации с использованием интерфейсов мозг–компьютер (ИМК) и выполнена в рамках разработки программно-аппаратного комплекса (ПАК) для восстановления когнитивных и моторных функций верхних конечностей при лёгких и выраженных нарушениях.
Материалы и методы: В исследовании приняли участие 24 здоровых добровольца. Электроэнцефалограмма регистрировалась при выполнении заданий на моторное воображение с различными визуальными стимулами. Анализ включал расчёт сенсомоторной десинхронизации (ERD), классификацию с использованием пространственных фильтров и линейного дискриминантного анализа, а также оценку корреляции с субъективными самооценками.
Результаты: Латеральность воображаемого движения оказала значимое влияние на выраженность ERD. Субъективная уверенность участников не коррелировала ни с нейрофизиологическими показателями, ни с уверенностью классификатора при распознавании воображаемого движения. При этом модели продемонстрировали высокую точность классификации моторных представлений.
Выводы: Выявленное несоответствие между субъективной и объективной оценкой подчеркивает необходимость внедрения биологической обратной связи и персонализированных ИМК в составе ПАК для повышения эффективности нейрореабилитации.
В статье представлено проектирование базы данных, предназначенной для оптимизации хранения и обработки медицинских данных, с акцентом на поддержку принятия решений в области интенсивной терапии и реанимации. Целью исследования является разработка логической модели базы данных на основе передовых принципов и методов, используемых в международных проектах открытых баз данных, способной минимизировать ошибки, связанные с человеческим фактором, и улучшить точность прогноза состояния пациентов в реальном времени.
Методология работы основана на сравнительном анализе существующих международных медицинских баз данных, таких как MIMIC-IV и eICU. Для проектирования новой базы данных применен инновационный модульный подход, который обеспечивает гибкость и масштабируемость системы.
Основные результаты работы заключаются в создании логической модели базы данных, которая может быть эффективно использована в российской системе здравоохранения, в том числе в удаленных и малоресурсных регионах. Логическая модель разработана с учётом специфики медицинских данных, включая модули для хранения информации о госпитализациях, показателях состояния пациентов, лабораторных исследованиях, медикаментозных назначениях и других аспектах клинической практики. Важной частью исследования является интеграция базы данных с российскими медицинскими информационными системами и адаптация к национальным стандартам и нормативным требованиям.
Созданная архитектура логической модели минимизирует влияние человеческого фактора, автоматизирует анализ данных и может использоваться в разработке систем поддержки принятия врачебных решений. Практическая значимость заключается в повышении качества медицинской помощи и снижении нагрузки на персонал. Система применима в российских учреждениях, включая удаленные регионы, и способствует цифровизации здравоохранения.
Рассмотрены требования к обезличенным данным реальной клинической практики (ДРКП), основные методы обезличивания и синтетизации ДРКП, позволяющие сохранить их клиническую информативность. Приведено описание процедуры сбора, обезличивания и использования ДРКП, которая обеспечивает высокую стойкость обезличенных данных относительно угроз нарушения конфиденциальности сведений, составляющих врачебную тайну.
Востребованность специалистов, обладающих глубокими знаниями в предметных областях как медицинского профиля, так и информационных технологий, обусловила существенное увеличение количества вузов, реализующих образовательную программу по направлению подготовки 30.05.03 — «Медицинская кибернетика» и стала причиной необходимости оценки ситуации с обучением студентов по данной специальности. Целью работы является анализ структуры и предметного наполнения образовательной программы по направлению подготовки 30.05.03 «Медицинская кибернетика» в вузах Российской Федерации.
Материалы и методы: сведения, представленные на официальных сайтах вузов и сайтах-агрегаторов для абитуриентов; документы, регламентирующие образовательный процесс по специальности 30.05.03 «Медицинская кибернетика».
Результаты исследования. Анализ основных аспектов образовательных программ по специальности 30.05.03 «Медицинская кибернетика» в десяти вузах РФ показал их соответствие общим требованиям ФГОС по данной специальности при существенном различии в подходах к предметному наполнению.
Выводы. Соответствие образовательных программ только формальным требованиям ФГОС, касающимся их общего объема, структуры и количества профессиональных компетенций, не позволяет гарантировать соответствие выпускников требованиям профессионального стандарта «Врач-кибернетик». Необходимы четкие критерии допустимых различий в предметном наполнении образовательной программы.
Все изделия медицинского назначения, как в Российской Федерации, так и в мире, проходят процедуры регистрации. Однако связанные с этим нормы и законодательство регулируются по-разному. Целью данного исследования явилась оценка функциональных возможностей существующей правовой базы и систем регистрации изделий медицинского назначения в некоторых странах мира.
Издательство
- Издательство
- НМХЦ ИМ. Н.И. ПИРОГОВА МИНЗДРАВА РОССИИ
- Регион
- Россия, Москва
- Почтовый адрес
- 105203, г Москва, р-н Восточное Измайлово, ул Нижняя Первомайская, д 70
- Юр. адрес
- 105203, г Москва, р-н Восточное Измайлово, ул Нижняя Первомайская, д 70
- ФИО
- Карпов Олег Эдуардович (Генеральный директор)
- Контактный телефон
- +7 (499) 4640303