Protists inhabit waters with different salinities up to saturation, and play significant roles in the food webs. In hypersaline environments, the simplified communities are composed of mainly pro- and eukaryotic halophilic microorganisms. The aim of this study was to characterize the prokaryotic assemblages associated with uniprotist cultures of heterotrophic and phototrophic halophilic protists isolated from inland saline water bodies and maintained under laboratory conditions for a long time. The cultures were represented by chlorophycean algae Dunaliella and Asteromonas, as well as by heterotrophic protozoa of the phylum Heterolobosea. DNA metabarcoding revealed that the prokaryotic assemblages differed drastically between the phototrophic and heterotrophic protists in richness, diversity and taxonomic composition. Generally, the prokaryotic assemblages of Heterolobosea protozoa were richer than those of chlorophycean algae. In the algal microbiomes, only few prokaryotic genera were revealed. They were represented by the bacterial phylum Pseudomonadota and the archaeal phylum Halobacteriota. Rather diverse prokaryotic assemblages were associated with the cultures of halophilic Heterolobosea protozoa. They were composed of the phyla Pseudomonadota, Bacteroidota, Balneolota, Thermodesulfobacteriota, Halobacteriota, and Nanohaloarchaeota. Predicted functional profiles of the prokaryotic assemblages revealed the pathways responsible for close metabolic interactions between the halophilic protists and their prokaryotic associates, including synthesis of organic osmotic solutes and their conversion, degradation of sugar and organic aromatic compounds, biosynthesis of cofactors and vitamins. The dramatic differences between prokaryotic assemblages of heterotrophic and phototrophic protists suggest the existence of different selection mechanisms shaping microbiomes of the halophilic protists that still have to be elucidated.
Идентификаторы и классификаторы
- SCI
- Биология
Protists are unicellular and colony-forming eukaryotes with autotrophic, heterotrophic or mixotrophic feeding, distributed worldwide in soils and water ecosystems including freshwater, marine, and hypersaline habitats (Weisse, 2008; Park and Simpson, 2015).
Список литературы
1. Ajani P.A., Kahlke T., Sibon, N., Carney R. et al. 2018. The microbiome of the cosmopolitan diatom Leptocylindrus reveals significant spatial and temporal variability. Front. Microbiol. 9: 2758. DOI: 10.3389/fmicb.2018.02758
2. Amin S.A., Hmelo L.R., Van Tol H.M., Durham B.P. et al. 2015.Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 522 (7554): 98-101. DOI: 10.1038/nature14488
3. Barreto Filho M.M., Walker M., Ashworth M.P., Morris J.J. 2021. Structure and long-term stability of the microbiome in diverse diatom cultures. Microbiol. Spectr. 9 (1): e00269-21. DOI: 10.1128/Spectrum.00269-21
4. Behringer G., Ochsenkühn M.A., Fei C., Fanning J. et al. 2018. Bacterial communities of diatoms display strong conservation across strains and time. Front. Microbiol. 9: 659. DOI: 10.3389/fmicb.2018.00659
5. Bell T., Bonsall M.B., Buckling A., Whiteley A.S. et al. 2010. Protists have divergent effects on bacterial diversity along a productivity gradient. Biol. Letters. 6 (5): 639-642. DOI: 10.1098/rsbl.2010.0027
6. Ben-Amotz A. and Grunwald T. 1981. Osmoregulation in the halotolerant alga Asteromonas gracilis. Plant Physiol. 67 (4): 613-616. DOI: 10.1104/pp.67.4.613
7. Berg G., Rybakova D., Fischer D., Cernava T. et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 8: 1-22. DOI: 10.1186/s40168-020-00875-0
8. Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A. et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37 (8): 852-857. https: //. DOI: 10.1038/s41587-019-0209-9
9. Borowitzka M.A. 1997. Microalgae for aquaculture: opportunities and constraints. J. Appl. Phycol. 9: 393-401. :1007921728300.
10. Borowitzka M.A. and Siva C.J. 2007. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol. 19: 567-590. DOI: 10.1007/s10811-007-9171-x
11. Cao J., Ma H.Y., Li H.Y., Wang K.R. et al. 2013. Halomonas socia sp. nov., isolated from high salt culture of Dunaliella salina. Extremophiles.17: 663-668. DOI: 10.1007/s00792-013-0549-1
12. Cho B.C., Park J.S., Xu K. and Choi J.K. 2008. Morphology and molecular phylogeny of Trimyema koreanum n. sp., a ciliate from the hypersaline water of a solar saltern. J. Eukaryot. Microbiol. 55 (5): 417-426. DOI: 10.1111/j.1550-7408.2008.00340.x
13. Chong J., Liu P., Zhou G. and Xia J. 2020. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15 (3): 799-821. DOI: 10.1038/s41596-019-0264-1
14. Crenn K., Duffieux D. and Jeanthon C. 2018. Bacterial epibiotic communities of ubiquitous and abundant marine diatoms are distinct in short- and long-term associations. Front. Microbiol. 9: 2879. DOI: 10.3389/fmicb.2018.02879
15. Delumeau A., Quétel I., Harnais F., Sellin A. et al. 2023. Bacterial microbiota management in free-living amoebae (Heterolobosea lineage) isolated from water: the impact of amoebae identity, grazing conditions, and passage number. Sci. Total Environ. 900: 165816. DOI: 10.1016/j.scitotenv.2023.165816
16. Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N. et al. 2020. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38 (6): 685-688. DOI: 10.1038/s41587-020-0548-6
17. Edgar R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 10 (10): 996-998. DOI: 10.1038/nmeth.2604
18. Edgar R.C., Haas B.J., Clemente J.C., Quince C. et al. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27 (16): 2194-2200. DOI: 10.1093/bioinformatics/btr381
19. Elevi Bardavid R., Khristo P. and Oren A. 2008.Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles. 12: 5-14. DOI: 10.1007/s00792-006-0053-y
20. Elevi Bardavid R. and Oren A. 2008. Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi. Extremophiles. 12: 125-131. DOI: 10.1007/s00792-007-0114-x
21. Escobar-Zepeda A., De León A.V.P. and Sanchez-Flores A. 2015. The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front. Genet. 6: 348. DOI: 10.3389/fgene.2015.00348
22. Foissner W., Jung J.H., Filker S., Rudolph J. et al. 2014. Morphology, ontogenesis and molecular phylogeny of Platynematum salinarum nov. spec., a new scuticociliate (Ciliophora, Scuticociliatia) from a solar saltern. Eur. J. Protistol. 50 (2): 174-184. DOI: 10.1016/j.ejop.2013.10.001
23. Gigeroff A.S., Eglit Y. and Simpson A.G. 2023. Characterization and cultivation of new lineages of Colponemids, a critical assemblage for inferring Alveolate evolution. Protist. 174 (2): 125949. https: //. DOI: 10.1016/j.protis.2023.125949
24. Glücksman E., Bell T., Griffiths R.I. and Bass D. 2010. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ. Microbiol. 12 (12): 3105-3113. DOI: 10.1111/j.1462-2920.2010.02283.x
25. Gong J., Qing Y., Zou S., Fu R. et al. 2016. Protist-bacteria associations: gammaproteobacteria and alphaproteobacteria are prevalent as digestion-resistant bacteria in ciliated protozoa. Front. Microbiol. 7: 498. DOI: 10.3389/fmicb.2016.00498
26. Guixa-Boixareu N., Calderón-Paz J.I., Heldal M., Bratbak G. et al. 1996. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11 (3): 215-227. DOI: 10.3354/ame011215
27. Harding T., Brown M.W., Simpson A.G.B. and Roger A.J. 2016. Osmoadaptative strategy and its molecular signature in obligately halophilic heterotrophic protists. Genome Biol. Evol. 8 (7): 2241-2258. DOI: 10.1093/gbe/evw152
28. Harding T. and Simpson A.G.B. 2018. Recent advances in halophilic protozoa research. J. Eukaryot. Microbiol. 65 (4): 556-570. DOI: 10.1111/jeu.12495
29. Heidelberg K.B., Nelson W.C., Holm J.B., Eisenkolb N. et al. 2013. Characterization of eukaryotic microbial diversity in hypersaline lake Tyrrell, Australia. Front. Microbiol. 4: 115. DOI: 10.3389/fmicb.2013.00115
30. Hotos G.N. 2019. A short review on the halotolerant green microalga Asteromonas gracilis Artari with emphasis on its uses. Asian J. Fish. Aquat. Res. 4 (3): 1-8. DOI: 10.9734/ajfar/2019/v4i330054
31. Keerthi S., Koduru U.D., Nittala S.S. and Parine N.R. 2018. The heterotrophic eubacterial and archaeal co-inhabitants of the halophilic Dunaliella salina in solar salterns fed by Bay of Bengal along south eastern coast of India. Saudi J. Biol. Sci. 25 (7): 1411-1419. DOI: 10.1016/j.sjbs.2015.10.019
32. Kirby W.A., Tikhonenkov D.V., Mylnikov A.P., Janouškovec J. et al. 2015. Characterization of Tulamoeba bucina n. sp., an extremely halotolerant amoeboflagellate heterolobosean belonging to the Tulamoeba-Pleurostomum clade (Tulamoebidae n. fam.). J. Eukaryot. Microbiol. 62 (2): 227-238. DOI: 10.1111/jeu.12172
33. Klindworth A., Pruesse E., Schweer T., Peplies J., et al. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41 (1): e1. DOI: 10.1093/nar/gks808
34. Koedooder C., Stock W., Willems A., Mangelinckx S. et al. 2019. Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Front. Microbiol. 10: 1255. DOI: 10.3389/fmicb.2019.01255
35. Lanzoni O., Plotnikov A., Khlopko Y., Munz G. et al. 2019. The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment. Sci. Rep. 9 (1): 11356. DOI: 10.1038/s41598-019-47701-8
36. Le Chevanton M., Garnier M., Bougaran G., Schreiber N. et al. 2013. Screening and selection of growth-promoting bacteria for Dunaliella cultures. Algal Res. 2: 212-222. DOI: 10.1016/j.algal.2013.05.003
37. Le Reun N., Bramucci A., Ajani P., Khalil A. et al. 2023. Temporal variability in the growthenhancing effects of different bacteria within the microbiome of the diatom Actinocyclus sp. Front. Microbiol. 14: 1230349. DOI: 10.3389/fmicb.2023.1230349 EDN: SSLRLB
38. Lee H.B., Jeong D.H., Cho B.C. and Park J.S. 2022a. The diversity patterns of rare to abundant microbial eukaryotes across a broad range of salinities in a solar saltern. Microb. Ecol. 84: 1103-1121. DOI: 10.1007/s00248-021-01918-1
39. Lee H.B., Jeong D.H. and Park J.S. 2022b. Accumulation patterns of intracellular salts in a new halophilic amoeboflagellate, Euplaesiobystra salpumilio sp. nov. (Heterolobosea; Discoba) under hypersaline conditions. Front. Microbiol. 13: 960621. DOI: 10.3389/fmicb.2022.960621
40. Lee H.B. and Park J.S. 2024. Ecological significance of newly recorded halophilic Pharyngomonas kirbyi from two Korean solar salterns. J. Ecol. Environ. 48: 37. DOI: 10.5141/jee.24.073
41. Levy B. and Jami E. 2018. Exploring the prokaryotic community associated with the rumen ciliate protozoa population. Front. Microbiol. 9: 2526. DOI: 10.3389/fmicb.2018.02526
42. Lupette J., Lami R., Krasovec M., Grimsley N. et al. 2016. Marinobacter dominates the bacterial community of the Ostreococcus tauri phycosphere in culture. Front. Microbiol. 7: 1414. DOI: 10.3389/fmicb.2016.01414
43. Martinez-Garcia M., Brazel D., Poulton N.J. et al. 2012. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J. 6 (3): 703-707. DOI: 10.1038/ismej.2011.126
44. Namyslowski B. 1913. Über unbekannte Microorganismen aus dem Innern des Salzbergwerkes Wieliczka. Bull.Internat. Acad. Sci. Cracow. Series B, ¾: 88-104 (in German).
45. Natrah F.M.I., Kenmegne M.M., Wiyoto W., Sorgeloos P. et al. 2011. Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture. 317 (1-4): 53-57. DOI: 10.1016/j.aquaculture.2011.04.038
46. Natrah F.M.I., Bossier P., Sorgeloos P., Yusoff F.M. et al. 2014. Significance of microalgal-bacterial.interactions for aquaculture. Rev. Aquacult. 6 (1): 48-61. DOI: 10.1111/raq.12024
47. Nemtseva N.V., IgnatenkoM.E. 2012. Discovery of halotolerant alga Asteromonas gracilis Artari from phitoplancton in the Orenburg region. Povolzhskiy Journal of Ecology. 1: 99-104 (in Russian with English summary).
48. Nemtseva N.V., Selivanova E.A., Ignatenko M.E. and Sharapova N.V. 2013. Characterization of a novel Dunaliella salina (Chlorophyta) strain and the assessment of its cultivation parameters.Russ. J. Plant Physiol. 60: 529-535. DOI: 10.1134/S1021443713040092
49. Oliveros J.C. 2007. Venny. An interactive tool for comparing lists with Venn’s diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html Last access: 13 February 2024.
50. Oren A. 1993. Availability, uptake and turnover of glycerol in hypersaline environments. FEMS Microbiol. Ecol. 12 (1): 15-23. DOI: 10.1111/j.1574-6941.1993.tb00012.x
51. Oren A. and Gurevich P. 1994. Production of D-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds. FEMS Microbiol. Ecol. 14 (2): 147-155. DOI: 10.1111/j.1574-6941.1994.tb00101.x
52. Pace M.L. 1988. Bacterial mortality and the fate of bacterial production. Hydrobiologia. 159: 41-49. DOI: 10.1007/BF00007366
53. Pánek T. and Čepička I. 2012. Diversity of Heterolobosea. In: Genetic diversity in microorganisms (Ed: Caliskan M.). In: Tech, Rijeka, pp. 3-26.
54. Park J.S., Cho B.C. and Simpson A.G.B. 2006. Halocafeteria seosinensis gen. et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern. Extremophiles. 10: 493-504. DOI: 10.1007/s00792-006-0001-x
55. Park J.S., Kim H., Choi D.H. and Cho B.C. 2003. Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat. Microb. Ecol. 33 (2): 173-179. DOI: 10.3354/ame033173
56. Park J.S., Simpson A.G.B., Lee W.J. and Cho B.C. 2007. Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). Protist. 158 (3): 397-413. DOI: 10.1016/j.protis.2007.03.004
57. Park J.S. and Simpson A.G.B. 2011. Characterization of Pharyngomonas kirbyi (= “Macropharyn-gomonas halophila” nomen nudum), a very deep-branching, obligately halophilic heterolobosean flagellate. Protist. 162 (5): 691-709. DOI: 10.1016/j.protis.2011.05.004
58. Park J.S. and Simpson A.G.B. 2015. Diversity of heterotrophic protists from extremely hypersaline habitats. Protist. 166 (4): 422-437. DOI: 10.1016/j.protis.2015.06.001
59. Park J.S. and Simpson A.G.B. 2016. Characterization of a deep-branching heterolobosean, Pharyngomonas turkanaensis n. sp., isolated from a non-hypersaline habitat, and ultrastructural comparison of cysts and amoebae among Pharyngomonas strains. J. Eukaryot. Microbiol. 63 (1): 100-111. DOI: 10.1111/jeu.12260
60. Park J.S., Simpson A.G.B., Brown S. and Cho B.C. 2009. Ultrastructure and molecular phylogeny of two heterolobosean amoebae, Euplaesiobystra hypersalinica gen. et sp. nov. and Tulamoeba peronaphora gen. et sp. nov., isolated from an extremely hypersaline habitat. Protist. 160 (2): 265-283. DOI: 10.1016/j.protis.2008.10.002
61. Park T. and Yu Z. 2018. Do ruminal ciliates select their preys and prokaryotic symbionts? Front. Microbiol. 9: 1710. DOI: 10.3389/fmicb.2018.01710
62. Park Y., Je K.W., Lee K., Jung S.E. et al. 2008. Growth promotion of Chlorella ellipsoidea by coinoculation with Brevundimonas sp. isolated from the microalga. Hydrobiologia. 598: 219-228. DOI: 10.1007/s10750-007-9152-8
63. Parks D.H., Tyson G.W., Hugenholtz P. and Beiko R.G. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 30(21): 3123-3124. DOI: 10.1093/bioinformatics/btu494
64. Patterson D.J. and Simpson A.G.B. 1996. Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur. J. Protistol. 32 (4): 423-448. DOI: 10.1016/S0932-4739(96)80003-4
65. Pedrós-Alió C., Calderón-Paz J.I., MacLean M.H., Medina G. et al. 2000. The microbial food web along salinity gradients. FEMS Microbiol. Ecol. 32 (2): 143-155. DOI: 10.1111/j.1574-6941.2000.tb00708.x
66. Pernthaler J. 2005. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3 (7): 537-546. DOI: 10.1038/nrmicro1180
67. Plotnikov A.O., Balkin A.S., Gogoleva N.E., Lanzoni O. et al. 2019. High-throughput sequencing of the 16S rRNA gene as a survey to analyze the microbiomes of free-living ciliates Paramecium. Microb. Ecol. 78 (2): 286-298. DOI: 10.1007/s00248-019-01321-x EDN: UJSRZA
68. Plotnikov A.O., Mylnikov A.P. and Selivanova E.A. 2015. Morphology and life cycle of amoeboflagellate Pharyngomonas sp. (Heterolobosea, Excavata) from hypersaline inland Razval Lake. Biol. Bull.Russ. Acad. Sci. 42: 759-769. DOI: 10.1134/S1062359015090083
69. Polle J.E.W., Tran D. and Ben-Amotz A. 2019. History, distribution, and habitats of algae of the genus Dunaliella Teodoresco (Chlorophyceae). In: The alga Dunaliella (Eds: Ben-Amotz A., Polle J.E.W. and Rao D.V.S.). CRC Press, Boca Raton, pp. 1-14. DOI: 10.1201/9780429061639-1
70. Potekhin A., Plotnikov A.O., Gogoleva N. and Sonntag B. 2024. Editorial: Microbial associations formed and hosted by protists, algae, and fungi. Front. Microbiol. 14: 1341058. DOI: 10.3389/fmicb.2023.1341058
71. Pucciarelli S., Devaraj R.R., Mancini A., Ballarini P. et al. 2015. Microbial consortium associated with the antarctic marine ciliate Euplotes focardii: an investigation from genomic sequences. Microb. Ecol. 70: 484-497. DOI: 10.1007/s00248-015-0568-9
72. Rosenberg K., Bertaux J., Krome K., Hartmann A. et al. 2009. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 3 (6): 675-684. DOI: 10.1038/ismej.2009.11
73. Rossi A., Bellone A., Fokin S.I., Boscaro V. et al. 2019. Detecting associations between ciliated protists and prokaryotes with culture-independent single-cell microbiomics: a proof-of-concept study. Microb. Ecol. 78: 232-242. DOI: 10.1007/s00248-018-1279-9
74. Ruinen J. 1938. Notizen über Salzflagellaten. II. Über die Verbreitung der Salzflagellaten. Arch. Protistenk. 90: 210-258 (in German).
75. Sapp M., Schwaderer A.S., Wiltshire K.H., Hoppe H.G. et al. 2007. Species-specific bacterial communities in the phycosphere of microalgae? Microb. Ecol. 53: 683-699. DOI: 10.1007/s00248-006-9162-5
76. Selivanova E.A., Poshvina D.V., Khlopko Y.A., Gogoleva N.E. et al. 2018. Diversity of prokaryotes in planktonic communities of saline Sol-Iletsk lakes (Orenburg oblast, Russia). Microbiology. 87: 569-582. DOI: 10.1134/S0026261718040161
77. Sison-Mangus M.P., Jiang S., Kudela R.M. and Mehic S. 2016. Phytoplankton-associated bacterial community composition and succession during toxic diatom bloom and non-bloom events. Front. Microbiol. 7: 1433. DOI: 10.3389/fmicb.2016.01433
78. Tamura K., Stecher G. and Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38 (7): 3022-3027. DOI: 10.1093/molbev/msab120
79. Tranvik L.J. 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. In: Dissolved organic matter in lacustrine ecosystems. Developments in hydrobiology (Eds: Salonen K., Kairesalo T. and Jones R.I.). 73. Springer, Dordrecht, pp. 107-114. DOI: 10.1007/978-94-011-2474-4_8
80. Volberg M.M. 1988.Interaction of microalgae and bacterial populations in the model system. PhD thesis. Moscow, pp. 1-24.
81. Weinisch L., Kirchner I., Grimm M., Kühner S. et al. 2019. Glycine betaine and ectoine are the major compatible solutes used by four different halophilic heterotrophic ciliates. Microb. Ecol. 77 (2): 317-331. DOI: 10.1007/s00248-018-1230-0
82. Weisse T. 2008. Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodivers. Conserv. 17: 243-259. DOI: 10.1007/s10531-007-9249-4
83. Williams T.J., Allen M., Tschitschko B. and Cavicchioli R. 2017. Glycerol metabolism of haloarchaea. Env. Microbiol. 19 (3): 864-877. DOI: 10.1111/1462-2920.13580
84. Williams W.D. 1996. What future for saline lakes? Environment: Science and Policy for Sustainable Development. 38 (9): 12-39. DOI: 10.1080/00139157.1996.9930999
85. Yoon H.S., Price D.C., Stepanauskas R., Rajah V.D. et al. 2011. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science. 332: 714-717. DOI: 10.1126/science.1203163
86. Zhang J., Kobert K., Flouri T. and Stamatakis A. 2014. PEAR: a fast and accurate Illumina Paired- End reAd mergeR. Bioinformatics. 30 (5): 614-620. DOI: 10.1093/bioinformatics/btt593
87. Zhang B., Xiao L., Lyu L., Zhao F. et al. 2024. Exploring the landscape of symbiotic diversity and distribution in unicellular ciliated protists. Microbiome. 12 (1): 96.
Выпуск
Другие статьи выпуска
Thecamoeba onigiri n. sp. (Amoebozoa, Discosea, Thecamoebida) was isolated from a moss sample collected in the surroundings of Lake Baikal (Russia). The amoebae of this species belong to the striate morphotype and have a single rounded nucleus. The nucleolar material of T. onigiri can be organized in different ways depending on the age of the culture. The most common was a nucleus with a nearly spherical eccentric nucleolus, sometimes located very close to the nuclear envelope. The surface of such a nucleolus was rough and uneven. This type of nucleolar organization was observed in one- to two-week-old cultures. In contrast, a centrally located rounded nucleolus with smooth surface predominated in three- to four-week-old cultures. This type of the nucleolus corresponds to the classical “vesicular” nucleus and is similar to that found in amoebae of “T. quadrilineata species group”, but differs in having lacunae that are more peripheral. Molecular phylogenetic analysis based on 18S rRNA gene sequences showed that T. onigiri forms a clade with T. astrologa as part of a larger group that also includes the “T. quadrilineata species group” and T. aesculea. Meanwhile, two species of Thecamoeba demonstrate polymorphism of the nucleolar material arrangement, and both these species are phylogenetically close.
Although the global distribution of eumycetozoans in terrestrial ecosystems with varying vegetation types has been a subject of a number of investigations during the past decade, there is still scarce to no available data from the mangrove forests, particularly in the Philippines. Hence, this study assesses and compares the occurrence and distribution of protosteloid amoebae inhabiting the mangrove ecosystem of San Fernando City, La Union, with the villages Biday and Catbangen as representatives. Aerial (AL) and ground (GL) leaf litter samples were used as substrates in isolating protosteloid amoebae and were subjected to moist chamber cultures. The 17 species belonging to 12 genera, from a total of 125 records, were described and reported in this study, with Protostelium mycophagum being the most often occurring species. Further results indicate that the ground microhabitat and the Biday site exhibited higher species diversity and abundance than the aerial microhabitat and the Catbangen site. Regarding species richness in the two leaf litters, GL hosted higher species richness than AL. The current research is one of the few that has assessed and surveyed the eumycetozoan distribution, occurrence, and ecology in the Philippine mangrove ecosystem. Furthermore, it demonstrates the potential for a mangrove forest to support diverse protosteloid amoebae growth.
The PII superfamily consists of widespread signal transduction proteins found in all domains of life. The most conserved PII-interactor across oxygenic phototrophs from cyanobacteria to Archaeplastida is the key enzyme of the ornithine/arginine synthesis pathway, N-acetyl-L-glutamate kinase (NAGK). T-loops represent the major PII-receptor binding element and are involved in the interaction with NAGK. Within the class Mamiellophyceae, only the genus Micromonas contains species with the PII protein. Bioinformatic analysis revealed that the PII protein of Micromonas pusilla (MpPII) has an unusually prolonged T-loop. Here, we performed the coupled enzyme assay and showed that MpPII has no remarkable influence on NAGK activity. An engineered variant of MpPII with deletion of four additional amino acids (AATD) in the T-loop restored the ability of this protein to relieve NAGK from feedback inhibition by arginine in a glutamine-dependent manner. The findings are discussed in the context of unusual plasticity of the PII protein family during the evolution of Archaeplastida.
In recent decades, infection of the European honey bee Apis mellifera with the highly virulent microsporidium Vairimorpha (Nosema) ceranae has become globally prevalent. It causes serious losses in beekeeping worldwide and requires new approaches to control bee nosemosis. Since this intracellular parasite has retained components of the RNA interference pathway, double-stranded RNA (dsRNA) treatment of insects may be effective in controlling V. ceranae infection. Inhibition of microsporidia growth in bees fed with 1.8 or even 0.04 μg dsRNA per ml of sugar syrup has been reported in the literature. Considering the crucial role of the genome’s DNA replication machinery for any cell, we synthetized in vitro dsRNA fragments of four V. ceranae genes encoding two subunits (delta and epsilon) of DNA polymerase, helicase and topoisomerase II and fed them to the infected bees with a relatively low dose of 1 µg per ml of sugar syrup. Surprisingly, PCR and qPCR analyses of V. ceranae growth in the midgut of dsRNA-treated insects at 7- and 12-days post-infection revealed neither inhibition of microsporidia growth nor downregulation of target genes. It is worth noting that we collected worker bees of different ages directly from a hive, to simulate the conditions during colony treatment in apiaries. At the same time, newly emerged insects reared in the laboratory were used in the successful experiments mentioned above. This suggests that bee housing conditions as well as gut content may affect the efficiency of RNA interference and requires further increase in dsRNA doses or their mixing with nanoparticle carriers.
Издательство
- Издательство
- ИНЦ
- Регион
- Россия, Санкт-Петербург
- Почтовый адрес
- Санкт-Петербург, 194064, Тихорецкий проспект, 4
- Юр. адрес
- Санкт-Петербург, 194064, Тихорецкий проспект, 4
- ФИО
- Томилин Алексей Николаевич (Руководитель)
- E-mail адрес
- cellbio@incras.ru
- Контактный телефон
- +7 (812) 2971878
- Сайт
- https:/incras.ru