Работы автора

HYPERBOLIC VOLUMES OF TWO BRIDGE CONE-MANIFOLDS (2025)

In this paper we investigate the existence of hyperbolic, Euclidean and spherical structures on cone-manifolds with underlying space 3-sphere and with singular set a given two-bridge knot. For two-bridge knots with 8 crossings we present trigonometric identities involving the length of singular geodesics and cone angles of such cone-manifolds. Then these identities are used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled in the hyperbolic space.

Издание: ИЗВЕСТИЯ ИРКУТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: МАТЕМАТИКА
Выпуск: том 51 (2025)
Автор(ы): Медных Александр Дмитриевич, Кутбаев Айдос Бакберген улы
Сохранить в закладках