Современные технологические операции в микроэлектронике, интегральной фотонике, а также в современных биомедицинских исследованиях требуют прецизионных измерений геометрических и диэлектрических параметров наноразмерных слоёв. В некоторых случаях из-за специфики формирования нанометровых слоёв, заключающейся в островковом (кластерном) механизме роста на начальных стадиях, использование традиционных оптических методов не позволяет получить объективную информацию. Настоящая статья посвящена исследованию метода контроля параметров формирования кластерных нанометровых плёнок с помощью плазмонной спектроскопии.
В рамках решения нерелятивистской электродинамической задачи получены формулы для тангенциальной диссипативной силы (силы электростатического трения) аксиальносимметричного зонда, движущегося параллельно плоской поверхности однородных пластин, или покрытых тонкими пленками пластин с различным сочетанием диэлектрических свойств. Разработаны численный алгоритм и программа расчета силы электростатического трения. В качестве примера вычислены силы трения металлического шарика вблизи металлической поверхности при фиксированной разности потенциалов между ними. Сравнение рассчитанных сил трения с экспериментальными значениями диссипативных сил в условиях электростатического взаимодействия обнаруживает расхождение на 8 порядков величины в меньшую сторону, как и в теоретических оценках других авторов. Зависимость силы трения от расстояния до поверхности аналогична наблюдавшейся в эксперименте.
Методом электронно-лучевого испарения получены пленки висмута толщиной от 6 до 200 нм на стекле и исследованы их морфология, структура, текстура, оптические и электрические свойства. Показано, что для всех образцов происходит самоорганизация нанокристаллического висмута в текстуру, в которой наиболее плотные атомные плоскости кристаллов ориентированы параллельно поверхности стекла.
Исследованы электрофизические характеристики и их термическая стабильность тонкопленочных резисторов на основе нитрида тантала (TaN), полученных методом реактивного магнетронного распыления. Определены оптимальные режимы процесса магнетронного распыления, обеспечивающие получение пленок фазового состава Ta2N со значением удельного электрического сопротивления 250 мкОм см и высокой термической стабильностью параметров. При использовании полученных результатов были изготовлены согласующие тонкопленочные резисторы для электрооптического модулятора Маха-Цендера на основе InP.
Приводятся результаты исследования влияния подслоя хрома на магнитные свойства (эффективную намагниченность насыщения) магнито-диэлектрических покрытий, состоящих из тонких (1,2–1,8 мкм) слоев магнитных металлов (никеля, железа) и алюмооксидной керамики, и получаемых при испарении мишеней электронным пучком в форвакуумном диапазоне (5–8 Па) давлений гелия. Обнаружено, что добавление подслоя хрома ухудшает магнитные свойства пленок, поэтому синтез магнито-диэлектрических покрытий в описанных условиях целесообразно осуществлять без такого подслоя.
На основе метода поверхностного плазмонного резонанса разработана методика из-
мерения толщины растущей металлической пленки порядка 0,1 мкм. В работе при-
менен метод численного моделирования и создание на его основе в среде LabView про-
граммы управления для контроля процесса роста металлической пленки по ее
оптическим параметрам. Показано, что метод является пригодным для его применения
при управлении процессом получения пленок с повторяющимися оптическими свой-
ствами. Возбуждая на поверхности пленки плазмон поляритонные волны и регистрируя
резонансное взаимодействие поверхностных плазмонов с поверхностной электромаг-
нитной волной, получают отклик в виде оптического сигнала. Анализ характеристик
резонансного отклика дает возможность корректировать ход процесса напыления