Архив статей

Машинное обучение в сфере национальной экономики (2025)
Выпуск: Том 29, № 3 (2025)
Авторы: Усмонов Азамджон Акрамджонович

В данной статье рассматривается применение машинного обучения в национальной экономике. Описываются основные концепции и методы машинного обучения, включая контролируемое, неконтролируемое обучение и обучение с подкреплением. Анализируются ключевые направления использования этой технологии в экономике, такие как прогнозирование рыночных тенденций, управление финансовыми рисками и анализ экономических данных. Особое внимание уделяется преимуществам машинного обучения, включая повышение эффективности принятия решений, автоматизацию процессов и обработку больших объемов данных. Вместе с тем рассматриваются проблемы внедрения данной технологии, такие как потребность в качественных данных, правовые и этические аспекты, а также нехватка квалифицированных специалистов. В статье предлагаются рекомендации по развитию инфраструктуры машинного обучения, инвестициям в иссчледования и подготовке кадров, что может способствовать экономическому росту и повышению конкурентоспособности страны.

Материалы и методы: В данной работе использовались различные методы и подходы к изучению машинного обучения в сфере национальной экономики. Основные методы включают анализ научной литературы, статистический анализ данных, моделирование с использованием алгоритмов машинного обучения, а также практическую реализацию экономических моделей с применением языков программирования Python и библиотек машинного обучения. Для анализа экономических данных были выбраны методы линейной регрессии, деревьев решений и нейронных сетей, так как они позволяют эффективно прогнозировать изменения ключевых макроэкономических показателей, таких как ВВП, инфляция, курс валют и уровень безработицы. В качестве инструментов использовались библиотеки Pandas, NumPy, Scikitlearn и Matplotlib, позволяющие обрабатывать, анализировать и визуализировать данные. Исследование основано на данных официальных статистических агентств и финансовых учреждений, включая исторические данные о макроэкономических показателях, рыночных тенденциях и финансовых рисках. Для обработки данных использовались методы очистки, нормализации и преобразования данных, что позволило повысить точность моделей. Практическая часть исследования включала разработку алгоритмов машинного обучения для прогнозирования экономических показателей. Модель линейной регрессии использовалась для предсказания роста ВВП, а более сложные модели, такие как случайные леса и градиентный бустинг, применялись для анализа более сложных взаимосвязей в экономике. Таким образом, использование современных методов машинного обучения в экономике позволяет получать точные прогнозы, выявлять закономерности в экономических данных и принимать стратегические решения на основе объективного анализа.

Заключение: Применение методов машинного обучения в национальной экономике открывает значительный потенциал для улучшения экономического анализа и принятия решений. С помощью современных алгоритмов и инструментов, таких как линейная регрессия, деревья решений и нейронные сети, можно эффективно моделировать и прогнозировать ключевые макроэкономические показатели, включая рост ВВП, инфляцию и финансовые риски. Эти методы позволяют более детально и точно понимать экономические тренды и взаимосвязи, что приводит к более обоснованным стратегическим решениям со стороны правительств, бизнеса и финансовых учреждений. Используя такие современные технологии, как Python, Pandas, NumPy и Scikit-learn, исследование продемонстрировало возможность обработки и анализа больших объемов экономических данных с высокой точностью. Машинное обучение предоставляет ценный инструмент для прогнозирования экономических показателей, управления рисками и оптимизации распределения ресурсов. Однако эффективность этих моделей зависит от качества используемых данных, и существуют проблемы, связанные с полнотой данных, интерпретируемостью моделей и вычислительными ресурсами. В заключение, машинное обучение является мощным инструментом для улучшения экономического прогнозирования и управления рисками. Для успешной интеграции этих технологий в национальные экономические системы страны должны инвестировать в исследования, улучшать цифровую инфраструктуру и разрабатывать образовательные программы для подготовки квалифицированных специалистов. Правильное внедрение машинного обучения может способствовать быстрому экономическому росту, более эффективному принятию решений и усилению конкурентоспособности на мировой арене.

Сохранить в закладках
ИСПОЛЬЗОВАНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ЦИФРОВОЙ ЭКОНОМИКЕ (2025)
Выпуск: Том 29, № 2 (2025)
Авторы: Олимов Насимжон Аминджонович

В данной работе рассматривается роль искусственного интеллекта (ИИ) в развитии цифровой экономики. Проанализированы ключевые направления использования ИИ в различных отраслях: от прогнозирования рыночных тенденций и оптимизации производственных процессов до повышения эффективности логистики и финансовых операций. Особое внимание уделено моделям машинного обучения, позволяющим анализировать большие объемы данных для принятия стратегических решений. Также затронуты вызовы, связанные с внедрением ИИ, включая вопросы кибербезопасности, утраты рабочих мест и этических аспектов. В работе представлены практические примеры использования ИИ для анализа рынка и оценки влияния автоматизации на занятость. Итогом исследования стало обобщение, что грамотное внедрение ИИ способствует повышению конкурентоспособности стран, ускорению инноваций и устойчивому экономическому росту в условиях глобальной цифровизации. Материалы и методы. Для анализа рынка с использованием искусственного интеллекта можно применить несколько простых методов на Python, включая анализ данных с помощью библиотек, таких как pandas для обработки данных и scikit-learn для машинного обучения. Один из самых простых вариантов — это анализ трендов с использованием метода регрессии. Вот пример простого кода для анализа рынка с использованием линейной регрессии. Результаты. В конечном итоге мы создаем модель, которая прогнозирует объем продаж на основе цены товара. Мы используем простую линейную регрессию для анализа зависимости между ценой и количеством проданных единиц товара. Код также визуализирует зависимость между ценой и объемом продаж, а также выводит коэффициенты модели. Заключение. Применение методов искусственного интеллекта, таких как линейная регрессия, позволяет эффективно анализировать рыночные тенденции и выявлять зависимости между ключевыми показателями, например, ценой и объемом продаж. Использование библиотек Python, таких как pandas и scikit-learn, упрощает обработку данных и построение прогнозных моделей. Визуализация результатов помогает лучше интерпретировать полученные зависимости, что может быть полезным инструментом для принятия обоснованных управленческих решений и оптимизации маркетинговых стратегий.

Сохранить в закладках
ЗАДАЧА ДЕТЕКТИРОВАНИЯ НЕДОПУСТИМЫХ СОБЫТИЙ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ В ИНФОРМАЦИОННОЙ ИНФРАСТРУКТУРЕ (2025)
Выпуск: Том 29, № 1 (2025)
Авторы: Евдокимова Дарья Александровна, Микрюков Андрей Александрович

Целью исследования является разработка усовершенствованного подхода к решению задачи детектирования недопустимых событий в области информационной безопасности для повышения точности обнаружения инцидентов и снижения числа ложных срабатываний. Недопустимым событием является событие в результате кибератаки, делающее невозможным достижение стратегических целей организации или приводящее к значительному нарушению ее основной деятельности. В основе предложенного решения задачи детектирования недопустимых событий лежит нейросетевой классификатор, обученный на данных о недопустимых событиях, таких как атрибуты, прекурсоры и индикаторы компрометации недопустимых событий. Данное решение обеспечивает всесторонний анализ событий и снижение вероятности пропуска недопустимых событий, что делает его актуальным для защиты критической информационной инфраструктуры. Актуальность данного исследования обусловлена быстрым ростом количества и сложности кибератак, а также необходимостью внедрения автоматизированных методов детектирования угроз, сопровождающимися недопустимыми событиями, которые приводят к негативным последствиям. В условиях увеличивающейся сложности киберугроз и многообразия атак традиционные методы обнаружения становятся недостаточно эффективными, что требует совершенствование существующих технологий для защиты информационных систем. Новизна разработанных предложений заключается в повышении точности детектирования недопустимых событий за счет использования методов машинного обучения и нейросетевого классификатора, а также сокращении времени реагирования с использованием инструмента сбора, обработки, агрегирования и визуализации Elastic Stack.

Материалы и методы исследования. Для решения задачи детектирования недопустимых событий использован инструмент Elastic Stack, обеспечивающий сбор, агрегацию и визуализацию данных о событиях. Основным инструментом анализа является нейросетевой классификатор, обученный на наборе атрибутов, прекурсоров и индикаторов компрометации недопустимых событий. Методы исследования включают применение механизмов корреляции событий, анализа аномалий и машинного обучения, которые интегрируются в единую систему. Результаты: предложено решение задачи детектирования недопустимых событий, основанное на применении выявленных атрибутов, прекурсоров и индикаторов компрометации недопустимых событий информационной безопасности.

Заключение: выявленные атрибуты, прекурсоры и индикаторы компрометации недопустимых событий обеспечивают решение задачи детектирования недопустимых событий. Применение предложенного решения способствует совершенствованию защиты информационных систем и снижению рисков, связанных с кибератаками, что особенно важно для обеспечения безопасности критической информационной инфраструктуры.

Сохранить в закладках