В данной статье рассматривается применение машинного обучения в национальной экономике. Описываются основные концепции и методы машинного обучения, включая контролируемое, неконтролируемое обучение и обучение с подкреплением. Анализируются ключевые направления использования этой технологии в экономике, такие как прогнозирование рыночных тенденций, управление финансовыми рисками и анализ экономических данных. Особое внимание уделяется преимуществам машинного обучения, включая повышение эффективности принятия решений, автоматизацию процессов и обработку больших объемов данных. Вместе с тем рассматриваются проблемы внедрения данной технологии, такие как потребность в качественных данных, правовые и этические аспекты, а также нехватка квалифицированных специалистов. В статье предлагаются рекомендации по развитию инфраструктуры машинного обучения, инвестициям в иссчледования и подготовке кадров, что может способствовать экономическому росту и повышению конкурентоспособности страны.
Материалы и методы: В данной работе использовались различные методы и подходы к изучению машинного обучения в сфере национальной экономики. Основные методы включают анализ научной литературы, статистический анализ данных, моделирование с использованием алгоритмов машинного обучения, а также практическую реализацию экономических моделей с применением языков программирования Python и библиотек машинного обучения. Для анализа экономических данных были выбраны методы линейной регрессии, деревьев решений и нейронных сетей, так как они позволяют эффективно прогнозировать изменения ключевых макроэкономических показателей, таких как ВВП, инфляция, курс валют и уровень безработицы. В качестве инструментов использовались библиотеки Pandas, NumPy, Scikitlearn и Matplotlib, позволяющие обрабатывать, анализировать и визуализировать данные. Исследование основано на данных официальных статистических агентств и финансовых учреждений, включая исторические данные о макроэкономических показателях, рыночных тенденциях и финансовых рисках. Для обработки данных использовались методы очистки, нормализации и преобразования данных, что позволило повысить точность моделей. Практическая часть исследования включала разработку алгоритмов машинного обучения для прогнозирования экономических показателей. Модель линейной регрессии использовалась для предсказания роста ВВП, а более сложные модели, такие как случайные леса и градиентный бустинг, применялись для анализа более сложных взаимосвязей в экономике. Таким образом, использование современных методов машинного обучения в экономике позволяет получать точные прогнозы, выявлять закономерности в экономических данных и принимать стратегические решения на основе объективного анализа.
Заключение: Применение методов машинного обучения в национальной экономике открывает значительный потенциал для улучшения экономического анализа и принятия решений. С помощью современных алгоритмов и инструментов, таких как линейная регрессия, деревья решений и нейронные сети, можно эффективно моделировать и прогнозировать ключевые макроэкономические показатели, включая рост ВВП, инфляцию и финансовые риски. Эти методы позволяют более детально и точно понимать экономические тренды и взаимосвязи, что приводит к более обоснованным стратегическим решениям со стороны правительств, бизнеса и финансовых учреждений. Используя такие современные технологии, как Python, Pandas, NumPy и Scikit-learn, исследование продемонстрировало возможность обработки и анализа больших объемов экономических данных с высокой точностью. Машинное обучение предоставляет ценный инструмент для прогнозирования экономических показателей, управления рисками и оптимизации распределения ресурсов. Однако эффективность этих моделей зависит от качества используемых данных, и существуют проблемы, связанные с полнотой данных, интерпретируемостью моделей и вычислительными ресурсами. В заключение, машинное обучение является мощным инструментом для улучшения экономического прогнозирования и управления рисками. Для успешной интеграции этих технологий в национальные экономические системы страны должны инвестировать в исследования, улучшать цифровую инфраструктуру и разрабатывать образовательные программы для подготовки квалифицированных специалистов. Правильное внедрение машинного обучения может способствовать быстрому экономическому росту, более эффективному принятию решений и усилению конкурентоспособности на мировой арене.
Цель исследования: разработать и проверить подход к обучению составителей цифрового контента в части создания альтернативного текста, точно описывающего оригинальное изображение, с использованием нейронной сети для генерирования контрольных изображений, реконструируемых по тексту. Отсутствие в веб-ресурсе текстовых описаний к визуальному контенту ограничивает цифровую доступность, особенно для пользователей с нарушением зрения. Для обеспечения доступности каждое информативное изображение должно сопровождаться альтернативным текстом. Известно, что текстовые альтернативы, сгенерированные с помощью автоматических инструментов, уступают по качеству описаниям, выполненным человеком. Следовательно, составитель цифрового контента должен уметь разрабатывать альтернативный текст к изображениям. Выдвинуто предположение, что нейронная сеть, способная генерировать изображения по текстовым описаниям, может выступать в роли инструмента, служащего для проверки релевантности составляемых текстовых альтернатив. Материалы и методы. Исследование выполнялось в апреле-мае 2023 года. 17 обучающихся бакалавриата изучили требования к разработке текстовых альтернатив, выполнили первичные текстовые описания к трем предложенным фотографиям, а затем откорректировали текст с использованием нейронной сети Kandinsky 2.1 согласно алгоритму: генерирование изображения по описанию; визуальное сравнение полученного изображения с оригиналом; возвращение к редактированию описания или завершение процесса. По первичным и итоговым описаниям исследователи воссоздали изображения с использованием той же нейронной сети. Дальнейшая работа заключалась в оценке качества всех текстовых описаний и сходства всех сгенерированных изображений с оригинальными. Результаты исследования (текстовые описания; оценки, выставленные экспертами; ссылки на сгенерированные изображения) опубликованы в виде набора данных в репозитории Mendeley Data. Для анализа данных использовали t-тест, корреляцию Пирсона и многомерную регрессию (при заданном уровне значимости p = 0,05). Результаты. Установлено, что средние оценки качества первичных и итоговых текстовых описаний значимо не отличались (p > 0,05), также не было выявлено значимых отличий для длины текста (p > 0,05). При этом существенно (p < 0,05) возрастало сходство сгенерированных изображений с оригинальными фотографиями после использования обучающимися нейронной сети. Следовательно, тренировка в нейронной сети способствовала повышению качества (сходства с оригиналом) изображений, сгенерированных по измененным текстовым описаниям, без потери качества описаний. Обнаружено также, что качество итоговых текстовых альтернатив тем выше, чем больше их размер в пределах отведенного лимита, чем лучше и короче первичные описания (p < 0,05). Таким образом, лаконичные и точные альтернативные описания к изображениям после тренировки обучающихся в нейронной сети могут быть преобразованы в не менее качественные текстовые альтернативы, релевантность которых повышается за счет добавления в описание деталей сюжета. Заключение. Нейронные сети для генерирования изображений могут быть применимы в качестве программного инструмента, стимулирующего потенциальных авторов контента к созданию более точного и полного альтернативного текста при сохранении его лаконичности. Представляется важным продолжить исследования, распространив их на изображения других типов, с использованием различных нейронный сетей.