Архив статей журнала
В статье рассматриваются методы прогнозирования сложности учебных курсов на основе логистической регрессии с использованием оценок по обеспечивающим дисциплинам. Основной объект исследования - курс «Программирование на Python», для которого ключевыми обеспечивающими дисциплинами выбраны математика, информатика и английский язык. Целью исследования является разработка модели, позволяющей адаптировать учебные задания к индивидуальным потребностям студентов, повышая эффективность образовательного процесса. Для реализации модели использованы синтетические данные, что обусловлено ограничениями доступа к реальным образовательным данным. Применение методов машинного обучения, в частности логистической регрессии, позволяет получить не только классификацию курсов по сложности (легкий, средний, сложный), но и вероятностные оценки, отражающие степень уверенности модели в своих предсказаниях. Авторы рассматривают весовые коэффициенты признаков, что позволяет понять вклад каждой обеспечивающей дисциплины в прогнозирование сложности. Прогнозирование сложности курсов и заданий способствует более точному подбору учебных материалов, что улучшает качество образования и способствует развитию персонализированных образовательных траекторий. Таким образом, статья вносит вклад в развитие методов образовательной аналитики и подчеркивает необходимость перехода от прогнозирования успеваемости студентов к прогнозированию сложности курсов, что открывает новые перспективы для персонализации образовательного процесса и повышения его эффективности.
Автоматическая идентификация и классификация нейронов в микропрепаратах нервной ткани имеет важное значение при изучении воздействия ионизирующего излучения на головной мозг. Оценка состояния клеток ЦНС специалистом вручную является трудоемким и субъективным процессом, в то время как алгоритмы машинного обучения показали потенциал в автоматизации этой задачи. В данной работе были использованы 81 фотоизображение препаратов гиппокампа мышей, на которых выделяли клетки без видимых повреждений, легко-измененные и дистрофические. Для каждой клетки вычислялись следующие параметры: Площадь, Округлость и Структурная сложность ядра. Данные параметры использовались для обучения классификатора RandomForestClassifier с использованием библиотеки scikit learn. Точность классификации составила 68%, при этом наиболее значимым признаком оказалась структурная сложность ядра. Предложенный классификатор может служить основой для автоматической системы анализа нейронов в микропрепаратах головного мозга.