Статья: СРАВНИТЕЛЬНЫЙ АНАЛИЗ РЕКУРРЕНТНЫХ НЕЙРОННЫХ СЕТЕЙ И МОДЕЛИ АВТОРЕГРЕССИИ ARIMA ПРИ ПРОГНОЗИРОВАНИИ НЕСТАЦИОНАРНЫХ ВРЕМЕННЫХ РЯДОВ
Для прогнозирования выхода светлых фракций установкой ЭЛОУ-АВТ-6 проведен сравнительный анализ модели рекуррентной нейронной сети и модели авторегрессии ARIMA. Приведено математическое описание этих моделей. Приведена реализация моделей с использованием библиотек Keras и Pmdarima на языке Python. Проведена серия экспериментов, в качестве данных использовались значения температуры куба колонны К-2, расход сырой нефти и расход фракции бензина. Сделан вывод, о превосходстве качества прогноза нейронных сетей над ARIMA
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 5
Информация о статье
- ISSN
- 2311-4908
- Журнал
- ПРИКЛАДНАЯ МАТЕМАТИКА И ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА
- Год публикации
- 2022