Статья: НЕЛИНЕЙНЫЕ УРАВНЕНИЯ ДЕФОРМИРОВАНИЯ ГИБКИХ ПЛАСТИН

В общих неортогональных координатах сформулированы нелинейные уравнения деформирования гибких пластин с учетом несовместных локальных деформаций. Использовались следующие предположения. 1. Перемещения пластины из отсчетной (самонапряженной) формы ограничены кинематическими гипотезами Кирхгофа - Лява. 2. Элементарные объемы, составляющие отсчетную форму, могут быть локально трансформированы в ненапряженное состояние посредством невырожденного линейного преобразования (гипотеза о локальной разгрузке). 3. Преобразования, обратные локальной разгрузке, - импланты - могут быть найдены из решения эволюционной задачи, моделирующей последовательное нанесение бесконечно тонких слоев на лицевую граничную поверхность пластины. Построены геометрические пространства аффинной связности, моделирующие глобальную отсчетную форму, свободную от напряжений. В качестве частных случаев рассмотрены: пространство Вайценбока (с ненулевым кручением), пространство Римана (с ненулевой кривизной) и пространство Вейля (с ненулевой неметричностью)

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
3

Предпросмотр документа

Информация о статье

ISSN
2541-7525
EISSN
2712-8954
Журнал
ВЕСТНИК САМАРСКОГО УНИВЕРСИТЕТА. ЕСТЕСТВЕННОНАУЧНАЯ СЕРИЯ
Год публикации
2024
Автор(ы)
КОЙФМАН К. Г., Лычев С. А.