Семантическая сегментация - операция в компьютерном зрении, заключающаяся в классификации и попиксельной локализации объектов на цифровом изображении. Данная статья содержит в себе обзор существующих модификаций классической архитектуры сверточной нейронной сети, направленных на решение проблемы искажения информации с исходного изображения. Проведено сравнение эффективности рассмотренных моделей в условиях бинарной и множественной семантической сегментации. Статья может быть полезной для ML/DL-разработчиков, желающих изучить проблематику сегментации изображений в рамках своей предметной области.
Идентификаторы и классификаторы
Наиболее качественной маской сегментации будет та, чьи итоговые разметки классов будут максимально точно совпадать с их реальным расположением. Для вычисления меры сходства этих множеств существует две метрики: коэффициент Жаккара или «Пересечение через объединение» (англ. Intersection over Union) и коэффициент Сёренсена-Дайса, известный также как F1-мера [2].
Список литературы
1. Лукашик Д. В. Анализ современных методов сегментации изображений // Экономика и качество систем связи. - 2022. - №2. - С. 57-65. EDN: OGMOGV
2. Monteux A. Metrics for semantic segmentation // Excursions in data: [сайт]. - Angelo Monteux, 2019 - Дата публикации: 10.05.2019. - URL: https://ilmonteux.github.io/2019/05/10/segmentation-metrics.html (дата обращения: 23.05.2024).
3. Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation // Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. - Springer International Publishing, 2015. - P. 234-241.
4. Badrinarayanan V., Kendall A., Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation // IEEE transactions on pattern analysis and machine intelligence. - 2017. - Vol. 39, No. 12. - P. 2481-2495.
5. Rethinking atrous convolution for semantic image segmentation / L. Chen, G. Papandreou, F. Schroff, H. Adam // arXiv preprint. [2017]. - arXiv:1706.05587.
6. Caltech-UCSD Birds-200-2011 (CUB-200-2011) [: Dataset] / C. Wah, S. Branson, P. Welinder [et al.]; California Institute of Technology // Perona Lab. - URL: https://www.vision.caltech.edu/datasets/cub_200_2011/(дата обращения: 23.05.2024).
7. Brostow G. J., Fauqueur J., Cipolla R. Semantic object classes in video: A high-definition ground truth database // Pattern recognition letters, 2009. - Vol. 30. - №. 2. - P. 88-97.
8. PyTorch documentation // pytorch.org. - URL: https://pytorch.org/docs/stable/index.html (дата обращения: 23.05.2024).
Выпуск
Другие статьи выпуска
В статье рассматриваются методы прогнозирования сложности учебных курсов на основе логистической регрессии с использованием оценок по обеспечивающим дисциплинам. Основной объект исследования - курс «Программирование на Python», для которого ключевыми обеспечивающими дисциплинами выбраны математика, информатика и английский язык. Целью исследования является разработка модели, позволяющей адаптировать учебные задания к индивидуальным потребностям студентов, повышая эффективность образовательного процесса. Для реализации модели использованы синтетические данные, что обусловлено ограничениями доступа к реальным образовательным данным. Применение методов машинного обучения, в частности логистической регрессии, позволяет получить не только классификацию курсов по сложности (легкий, средний, сложный), но и вероятностные оценки, отражающие степень уверенности модели в своих предсказаниях. Авторы рассматривают весовые коэффициенты признаков, что позволяет понять вклад каждой обеспечивающей дисциплины в прогнозирование сложности. Прогнозирование сложности курсов и заданий способствует более точному подбору учебных материалов, что улучшает качество образования и способствует развитию персонализированных образовательных траекторий. Таким образом, статья вносит вклад в развитие методов образовательной аналитики и подчеркивает необходимость перехода от прогнозирования успеваемости студентов к прогнозированию сложности курсов, что открывает новые перспективы для персонализации образовательного процесса и повышения его эффективности.
Обсуждается развитие новых видов интеллектуальной когнитивной робототехники с учетом возрастающих потребностей применения роботизированных социотехнических систем в промышленных / непромышленных сферах (особенно для применения в катастрофических ситуациях типа техногенных аварий или коронавирус) и развития квантовых сквозных ИТ. Промышленная революция «Индустрия 4.0» и третья квантовая революция «Квантовая программная инженерия» предопределили развитие нового направления - интеллектуальное когнитивное управление роботизированными социотехническими системами как основы проекта «Индустрия 5.0». Одной из основных проблем стала необходимость исследования взаимодействия человека-оператора с роботом и перераспределения зон ответственности между роботами в коллективе (толпе - swarm) роботов, человеком - оператором и роботом, а также выявления предельных возможностей допустимой работоспособности (Affordance / Kansei / Kawaii Engineering) роботов в различных проблемно-ориентированных областях. Проведен анализ развития моделей роботизированных социотехнических систем и построения образовательных процессов с нестандартной логикой подготовки ИТ-специалистов нового поколения в условиях стремительного разрыва между образовательными процессами и требованиями к базовым знаний в области квантовых сквозных ИТ. Представлена методология, разработанная в ЛИТ им. М. Г. Мещерякова ОИЯИ, по подготовки ИТ-специалистов нового поколения для управления физическими экспериментами, квантового интеллектуального управления физическими установками в мегасайнс проектах типа NICA, роботов - беспилотников радиационного контроля окружающей среды и др.
Работа посвящена решению задачи сегментации текстовых изображений, целью которой является выделение на изображении документа текстовых блоков, соответствующих колонкам, заголовкам, колонтитулам и т. д. Проводится обзор существующих методов сегментации изображений, в том числе предназначенных и для поиска и выделения на изображениях текстовых блоков. Анализируются как классические методы, так и методы, основанные на использовании искусственных нейронных сетей. Для решения поставленной задачи предлагается подход на основе свёрточных нейронных сетей и модели U-Net. Описывается метод автоматической генерации обучающих примеров для обучения нейронной сети. Рассматривается процессы настройки модели, её обучения и тестирования. Приводятся результаты численного исследования обученных моделей на реальных данных.
В работе проведен анализ текстов описаний товарных позиций ТН ВЭД для обуви, определены признаки, влияющие на классификацию. Предложена систематизация признаков, доступных для визуального распознавания и формализации из документации. Приведены возможности использования методов искусственного интеллекта для решения задач классификации, приведен опыт построения экспертной системы.
В статье представлены способы применения фрактальной геометрии при исследовании речной системы Волги. Дан обзор алгоритмов вычисления фрактальной размерности и приведены примеры расчетов, а также описаны пути трактовки и применения полученных результатов.
Автоматическая идентификация и классификация нейронов в микропрепаратах нервной ткани имеет важное значение при изучении воздействия ионизирующего излучения на головной мозг. Оценка состояния клеток ЦНС специалистом вручную является трудоемким и субъективным процессом, в то время как алгоритмы машинного обучения показали потенциал в автоматизации этой задачи. В данной работе были использованы 81 фотоизображение препаратов гиппокампа мышей, на которых выделяли клетки без видимых повреждений, легко-измененные и дистрофические. Для каждой клетки вычислялись следующие параметры: Площадь, Округлость и Структурная сложность ядра. Данные параметры использовались для обучения классификатора RandomForestClassifier с использованием библиотеки scikit learn. Точность классификации составила 68%, при этом наиболее значимым признаком оказалась структурная сложность ядра. Предложенный классификатор может служить основой для автоматической системы анализа нейронов в микропрепаратах головного мозга.
Издательство
- Издательство
- ДУБНА
- Регион
- Россия, Дубна
- Почтовый адрес
- 141980 г.Дубна Московской обл., ул.Университетская, 19
- Юр. адрес
- 141980 г.Дубна Московской обл., ул.Университетская, 19
- ФИО
- Деникин Андрей Сергеевич (ИСПОЛНЯЮЩИЙ ОБЯЗАННОСТИ РЕКТОРА)
- E-mail адрес
- rector@uni-dubna.ru
- Контактный телефон
- +8 (496) 2166001