Для обеспечения комфортного содержания лабораторных яванских макак, которые играют важную роль в доклинических исследованиях, необходимо уделить внимание нескольким ключевым аспектам. Важно обеспечить подходящее для данного вида животных размещение, устанавливать и контролировать оптимальные параметры микроклимата мест содержания, составлять сбалансированный по необходимым нутриентам рацион кормления, подбирать и предоставлять различные виды среды обогащения, а также учитывать особенности репродуктивной системы для успешного воспроизводства животных и получения здорового потомства.
Поиск публикаций выполняли в базах данных PubMed и Google Scholar. В обзор включали публикации, доступные для поиска на 09.07.2024 г. В результате настоящего обзора были обозначены и обобщены данные литературы по лабораторным яванским макакам, которые описывают условия размещения животных; допустимые параметры микроклимата в местах содержания (температура, влажность, кратность воздухообмена, освещенность и цикл освещения); предоставление различных видов обогащения среды; характерное поведение макак в популяции; особенности репродуктивной системы самцов и самок; половое поведение животных в период садки, включая оптимальный период для их спаривания; период беременности и родов; особенности макак в уходе за потомством. При анализе данных литературы были собраны основные рекомендации по содержанию яванских макак с учетом всех зоотехнических потребностей при их размещении и воспроизводстве.
Идентификаторы и классификаторы
- УДК
- 636.978. Приматы
Яванский макак (макак-крабоед, длиннохвостый макак, Macaca fascicularis) — вид нечеловекообразных приматов Старого Света [1] из семейства мартышковых (Cercopithecidae), ведущий древесный и частично наземный образ жизни. Масса взрослых самцов составляет 3,9–8,4 кг, самок — 1,5–5,7 кг [2], а продолжительность жизни — 25–30 лет [3].
Список литературы
1. Rho J., Lee J.Y., Yang M.J. Reference value of hematologic, urologic, and organ weights of 2- to 4-year-old long-tailed macaques (Macaca fascicularis fascicularis) in the context of toxicological studies // Journal of medical primatology. 2021. Vol. 50. N. 6. P. 281–290. DOI: 10.1111/jmp.12546.
2. Rоder E.L., Timmermans P.J. Housing and care of monkeys and apes in laboratories: adaptations allowing essential species-specific behavior // Laboratory Animals. 2002. Vol. 36. N. 3. P. 221–242. DOI: 10.1258/002367702320162360.
3. Li X., Santos R., Bernal J.E. et al. Biology and postnatal development of organ systems of cynomolgus monkeys (Macaca fascicularis) // Journal of medical primatology. 2022. Vol. 52. N. 1. P. 64–78. DOI: 10.1111/jmp.12622.
4. Guidelines for accommodation and care of animals. Appendix a of the european convention for the protection of vertebrate animals used for experimental and other scientific purposes. Strasbourg, 2006.
5. National Academies of Sciences, Engineering, and Medicine. The Psychological Well-Being of Nonhuman Primates. Washington: National Academies Press, 1998. DOI: 10.17226/4909.
6. Goosen C., Gulden W., Rozemond H. et al. Recommendations for the housing of macaque monkeys // Laboratory Animals. 1984. Vol. 18. P. 99–102. DOI: 10.1258/ 002367784780891316.
7. Baker K.C., Bloomsmith M.A., Oettinger B. et al. Benefits of pair housing are consistent across a diverse population of rhesus macaques // Animal behaviour science. 2012. Vol. 137. N. 3–4. P. 148–156. DOI: 10.1016/ j.applanim.2011.09.010.
8. Association of Primate Veterinarians’ Socialization Guidelines for Nonhuman Primates in Biomedical Research // Journal of the American Association for Laboratory Animal Science: JAALAS. 2019. Vol. 58. N. 6. P. 753–754.
9. Baker K.C., Bloomsmith M.A., Oettinger B. et al. Comparing options for pair housing rhesus macaques using behavioral welfare measures // American journal of primatology. 2014. Vol. 76. N. 1. P. 30–42. DOI: 10.1002/ajp.22190.
10. Canadian Council on Animal Care. Guide to the Care and Use of Experimental Animals. 1993. Vol. 1. P. 201.
11. Canadian Council on Animal Care. CCAC guidelines: Nonhuman primates. 2019. P. 87.
12. Maaskant A., Janssen I., Wouters I.M. et al. Assessment of Indoor Air Quality for Group-Housed Macaques (Macaca spp.) // Animals. 2022. Vol. 12. N. 14. P. 1750. DOI: 10.3390/ani12141750.
13. Tsuchida J., Yoshida T., Sankai T. et al. Maternal behavior of laboratory-born, individually reared long-tailed macaques (Macaca fascicularis) // Journal of the American Association for Laboratory Animal Science. 2008. Vol. 47. N. 5. P. 29–34.
14. National Research Council. Guide for the Care and Use of Laboratory Animals. Washington: National Academy Press, 1996.
15. Storey P., Turner P., Tremblay J. Environmental enrichment for rhesus macaques: a cost-effective exercise cage // Contemporary topics in laboratory Animal Science. 2000. Vol. 39. N. 1. P. 14–16.
16. Albanese V., Kuan M., Accorsi P. A. et al. Evaluation of an enrichment programme for a colony of longtailed macaques (Macaca fascicularis) in a rescue centre // Primates. 2021. Vol. 62. N. 4. P. 585–593. DOI: 10.1007/s10329-021-00908-8.
17. Honess P.E., Marin C.M. Enrichment and aggression in primates // Neuroscience and biobehavioral reviews. 2006. Vol. 30. N. 3. P. 413–436. DOI: 10.1016/ j.neubiorev.2005.05.002.
18. Bloomsmith M.A., Lambeth S.P. Videotapes as enrichment for captive chimpanzees (Pan troglodytes) // Zoo Biology. 2000. Vol. 19. N. 6. P. 541–551. DOI: 10.1002/1098-2361(2000)19:6<541.
19. Schub T., Eisenstein M. Enrichment devices for nonhuman primates // Lab. Animal. 2003. Vol. 32 N. 10. P. 37–40. DOI: 10.1038/laban1103-37.
20. Truelove M.A., Martin A.L., Perlman J.E. et al. Pair housing of Macaques: A review of partner selection, introduction techniques, monitoring for compatibility, and methods for long-term maintenance of pairs // American journal of primatology. 2017. Vol. 79. N. 1. P. 1–15. DOI: 10.1002/ajp.22485.
21. Buchanan-Smith H.M. Environmental enrichment for primates in laboratories // Advances in Science and Research. 2010. Vol. 5. P. 41–56. DOI: 10.5194/ asr-5-41-2010.
22. Бондарева Е.Д., Акимова М.А., Веснина Е.В. Рекомендуемые способы поения лабораторных животных. Технические особенности. Обеспечение бла- гополучия и здоровья лабораторных животных // Лабораторные животные для научных исследований. 2022. № 2. [Bondareva Ye.D., Akimova M.A., Vesnina Ye.V. Rekomenduyemyye znacheniya dlya laboratornykh issledovaniy zhivotnykh. Tekhnicheskiye osobennosti. Povysheniye urovnya zhizni i zdorov’ya laboratornykh zhivotnykh // Laboratornyye zhivotnyye dlya nauchnykh issledovaniy. 2022. N. 2. (In Russ.)]. DOI: 10.29296/2618723X-2022-02-08.
23. National Research Council. Nutrient Requirements of Nonhuman Primates: Second Revised Edition. Washington: The National Academies Press, 2023. DOI: 10.17226/9826.
24. Yoshida T., Nakajima M., Hiyaoka A. et al. Menstrual Cycle Lengths and the Estimated Time of Ovulation in the Cynomolgus Monkey (Macaca fascicularis) // Experimental animals. 1982. Vol. 31. N. 3. P. 165–174. DOI: 10.1538/expanim1978.31.3_165.
25. Weinbauer G.F., Niehoff M., Niehaus M. et al. Physiology and Endocrinology of the Ovarian Cycle in Macaques // Toxicologic pathology. 2008. Vol. 36. N. 7. P. 7–23. DOI: 10.1177/0192623308327412.
Выпуск
Другие статьи выпуска
Цель работы — изучить реабсорбцию белков в почках озерных лягушек (Pelophylax ridibundus) при гиперволемии, дегидратации и действии аргинин-вазотоцина (АВТ), антидиуретического гормона амфибий. Использовали методы иммуногистохимии, конфокальной микроскопии и автоматизированного анализа флуоресцентных сигналов. На фиксированных препаратах почек регистрировали свечение в проксимальных канальцах рецептора эндоцитоза мегалина и введенных белков — лизоцима и зеленого флуоресцентного белка (GFP). Рассчитывали интенсивность сигналов, число флуоресцентных канальцев и эндоцитозных везикул, а также процент колокализации белков с мегалином. Дегидратация и инъекции АВТ приводили, как правило, к снижению показателей реабсорбции. Данные сопоставлены со сходными эффектами гипернатриемии, а также с показателями крови и функции почек, продемонстрированными ранее у лягушек в аналогичных экспериментальных условиях. Можно полагать, что у лягушек увеличение концентрации осмотически активных веществ в крови и первичной моче, а также уменьшение скорости клубочковой фильтрации приводит к снижению захвата и скорости внутриклеточного транспорта белков в клетках проксимальных канальцев.
Интенсивность исследований и применения природного биологически активного вещества муцина улиток в фармакологии и косметологии сегодня позволяет говорить о его масштабной отраслевой потребности в ближайшем будущем. В связи с этим актуальна разработка высокопроизводительных методов получения улиточной слизи, предполагающих многократную экстракцию секрета на протяжении жизни моллюска без причинения вреда его физиологическому состоянию. В работе предложен и исследован способ нетравмирующего воздействия на моллюсков, позволяющий стимулировать секреторную функцию животных и повысить производительность получения муцина. На примере улиток вида Helix pomatia с помощью разработанного и изготовленного опытного образца устройства для получения муцина в лабораторных условиях подтверждена возможность применения пульсирующего светодиодного излучения в видимом диапазоне спектра в качестве нетравмирующего воздействия, повышающего производительность получения секрета. Установлен наиболее эффективный режим светового воздействия. Показана эффективность сочетания пульсирующего светового воздействия с другим нетравмирующим фактором — механическим воздействием текстуры опорной поверхности на ногу моллюска. Приведены фото, иллюстрирующие основные конструктивные и исполнительные узлы (корпус, крышка-шасси, плата контроллера, светодиодный светильник, опорная пластина с ребристой поверхностью) экспериментального устройства для получения муцина.
Доклиническую оценку специфической активности инфузионных растворов проводят на крупных лабораторных животных, использование которых в скрининговых исследованиях затруднено в связи с большими материальными и временными затратами. В настоящее время коллективом авторов (Шперлинг И. А. и др.) разработана модель острой кровопотери на крысах, в которой критериями специфической активности инфузионных растворов рассматриваются расчетные показатели: приведенный ударный объем крови (ПУдОК) и показатель эффективности инфузии (ПЭИ). Данные показатели рассматриваются в качестве косвенных аналогов ударного объема сердца — основного показателя функции сердечной деятельности. Динамика данных показателей позволяет комплексно оценить эффективность механизмов поддержания гемодинамики при острой кровопотере и ее восполнении в скрининговых исследованиях на мелких лабораторных животных. В связи с этим проведено исследование с целью определения возможности использования приведенного ударного объема крови и показателя эффективности инфузии в качестве критериев оценки специфической активности инфузионных растворов на модели острой кровопотери у крупных лабораторных животных. Содержание животных и все манипуляции с ними одобрены локальным этическим комитетом. У наркотизированных (внутримышечно золетил 100; ингаляционно изофлуран) самцов свиней (массой около 50 кг) проводили эксфузию крови через яремную вену в объеме 45–50% объема циркулирующей крови (ОЦК) (исходя из ОЦК, равного 7% массы животного) со скоростью 50 мл/мин до установления стойкой артериальной гипотензии. Далее животные были распределены на 2 группы по 10 особей: контрольную (без инфузии) и опытную (восполнение ОЦК реополиглюкином, который вводили в яремную вену через 15 мин после окончания эксфузии крови). В динамике эксперимента регистрировали частоту сердечных сокращений (ЧСС) и среднее артериальное давление (АДср), проводили ЭхоКГ, измерение ударного объема (УО) крови, рассчитывали ПУдОК и ПЭИ. Статистический анализ полученных данных выполняли с помощью программного обеспечения Statistica 10.0. Сравнительный анализ позволил установить тесную корреляционную связь между исследуемыми показателями гемодинамики (ПУдОК и ПЭИ) и УО, измеренным с помощью ЭхоКГ. На основе полученных результатов дополнительно разработаны прогностические признаки благоприятного и неблагоприятного течения периода острой кровопотери. Рассмотренные в настоящем исследовании расчетные показатели (ПУдОК и ПЭИ) являются корректными индексами, отражающими гемодинамику при острой кровопотере и эффективность ее компенсации вливанием инфузионных растворов. Данные показатели не требуют фактического подтверждения УО крови, являющегося одним из ключевых показателей эффективности деятельности сердца, и могут быть использованы в экспериментах по оценке специфической активности инфузионных растворов на модели острой кровопотери у крупных лабораторных животных, в частности, свиней.
Гематологический анализ, или общий анализ крови, направленный на оценку качественного и количественного состава крови позволяет учитывать широкий спектр показателей. Это один из наиболее простых и часто используемых анализов, позволяющий осуществить мониторинг здоровья лабораторных животных, а также оценивать ход эксперимента. С его помощью можно получить характеристику всех форменных элементов крови: эритроцитов, лейкоцитов и тромбоцитов, оценить их процентное соотношение, форму и вид, обнаружить патологические формы клеток, клеток-предшественников или различные включения. Данный вид анализа может указать на ранние изменения состояния здоровья организма, определить такие состояния, как анемия/полицитемия, тромбоцитопения/тромбоцитоз и лейкопения/лейкоцитоз, которые могут быть симптомами какого-либо заболевания или выступать в качестве самостоятельных патологий. Именно поэтому в каждом научном центре необходимо иметь референтные интервалы гематологических показателей крови здоровых лабораторных животных, учитывающие критические преаналитические, аналитические и постаналитические особенности. Целью данной работы являлось установление референтных интервалов гематологических показателей крови как самцов, так и самок мышей, песчанок, хомяков, крыс, морских свинок и кроликов, как широко используемых тест-систем в биомедицинских исследованиях. Возраст всех животных соответствовал диапазону половой зрелости, в исследование были включены самцы и небеременные и нерожавшие самки без учета фазы менструального цикла. Данные, используемые в работе, были получены от интактных животных за временной период январь—июнь 2024 г. в АО «НПО «ДОМ ФАРМАЦИИ». Вся работа была поделена на два этапа: оценка показателей на гематологическом анализаторе и подсчет лейкоцитарной формулы в ходе микроскопического анализа. В цельной крови животных посредством гематологического анализатора регистрировали такие показатели, как общее число эритроцитов, гематокрит, концентрация гемоглобина, средний объем эритроцитов в общем объеме пробы, среднее содержание гемоглобина в эритроците, средняя концентрация гемоглобина в эритроците, общее число тромбоцитов, общее число лейкоцитов, число лимфоцитов и гранулоцитов. При подсчете лейкоцитарной формулы регистрировались такие показатели, как содержание палочкоядерных и сегментоядерных нейтрофилов, эозинофилов, моноцитов, базофилов и лимфоцитов. При сравнении полученных интервалов с референтными значениями из источников литературы было показано, что в целом диапазоны рассматриваемых показателей схожи, но присутствуют и различия. Наибольшие различия были связаны с количеством эритроцитов, тромбоцитов, моноцитов, лимфоцитов, нейтрофилов и концентрацией гемоглобина. Референтные интервалы, рассчитанные в ходе исследования, могут быть полезным инструментом мониторинга состояния здоровья лабораторных животных в ходе проведения доклинических экспериментов.
Мочекаменная болезнь (уролитиаз) характеризуется образованием минерализованных конкрементов в мочевыводящих путях и является одним из самых распространенных заболеваний современного человека. Физико-химические реакции, составляющие основу патогенеза формирования камней, а также роль регулирующих молекул в данном процессе до конца не изучены, что затрудняет разработку эффективных лекарственных препаратов для лечения и профилактики данной патологии и в то же время обусловливает актуальность исследования возможных моделей уролитиаза на лабораторных животных. В данной работе представлены результаты моделирования мочекаменной болезни у самцов крыс и кроликов при помощи введения этиленгликоля (ЭГ) с питьевой водой. ЭГ обладает литогенным действием, поскольку в результате его метаболизма синтезируется большое количество оксалат-ионов, которые, соединяясь с ионами кальция в моче, образуют нерастворимые соли. Возможность формирования патологии исследовали в следующих режимах дозирования индуктора: введение крысам 1% ЭГ в течение 28 дней (n=20) и 1,5% ЭГ в течение 9 дней (n=20); кроликам 1,5% ЭГ в течение 28 дней (n=16) и 4% ЭГ в течение 13 дней (n=16). В рамках данной работы у всех экспериментальных животных регистрировали потребление воды, массу тела, проводили ежедневное клиническое наблюдение, в сыворотке крови оценивали уровень альбумина, общего белка, кальция, фосфора, мочевины, креатинина, аланинаминотрансферазы, аспартатаминотрансферазы, щелочной фосфатазы и лактатдегидрогеназы, в пробах мочи исследовали содержание кристаллов, креатинина, мочевины, белка и кальция. Почки крыс и кроликов подвергались гистологическому исследованию. На основании полученных данных проведена оценка эффективности формирования уролитиаза у крыс и кроликов в исследованных режимах, по результатам которой наиболее удачным признано введение 1% ЭГ крысам в течение 28 дней. При необходимости использовать кроликов в качестве тест-системы следует помнить о слабой выраженности отклонений лабораторных параметров от физиологической нормы.
Одним из актуальных направлений при изучении механизмов развития патологий, возможности тестирования новых фармакологических препаратов, а также внедрении альтернативных способов терапии болезней является использование лабораторных животных, среди которых чаще всего выбираются грызуны. Расстройства аутистического спектра требуют изучения не только генетических и нейробиологических механизмов возникновения, но и возможности ранней диагностики и облегчения симптоматики. Цель представленной работы — провести обзор имеющихся методов создания экспериментальных моделей расстройств аутистического спектра и современных тестов, необходимых для оценки поведенческих паттернов животных при проведении биомедицинских исследований по изучению аутизма. Поиск источников литературы осуществляли в базах данных PubMed и РИНЦ по следующим словарным запросам: «расстройства аутистического спектра», «модели на грызунах», «поведенческие модели», «фармакологические модели расстройств аутистического спектра», «autism», «autism spectrum disorder» и др. Временной горизонт поиска распространялся на 2016–2023 гг. Рассмотрены современные подходы к моделированию расстройств аутистического спектра на грызунах. Отдельное место занимает описание фармакологических и поведенческих моделей. Большое внимание уделяется комплексному изучению поведения животных для оценки степени выраженности симптомов аутизма, а именно нарушений социального поведения, проявлений стереотипного поведения и расстройств коммуникационных способностей.
Катехол-О-метилтрансфераза (KОМТ) является одним из основных ферментов млекопитающих, участвующих в метаболизме катехоламинов, таких как дофамин, норадреналин. Процесс метаболизма катехоламинов важен для регуляции нормального функционирования нервной системы, включая эмоции и реакции на стресс. Участие KОМТ в функционировании нервной системы делает животных с инактивированным геном comt удобной моделью для изучения психических расстройств. С помощью CRISPR/Cas9-технологии была создана новая линия мышей с нокаутом гена comt. Измерение концентрации нейромедиаторов и их метаболитов в стриатуме и префронтальной коре у мышей с нокаутом гена comt и мышей дикого типа проводили методом высокоэффективной жидкостной хроматографии с использованием внутреннего стандарта 2,3-дигидроксибензойной кислоты, не встречающейся в нативной ткани, в концентрации 100 нг/мл. У гомозиготных мышей с нокаутом гена comt наблюдалось отсутствие гомованилиновой кислоты — конечного продукта метаболизма дофамина в префронтальной коре и стриатуме, в то время как уровень промежуточного продукта 3,4-дигидроксифенилуксусной кислоты был выше. Уровень норадреналина в префронтальной коре оказался выше, тогда как в стриатуме достоверных различий между нокаутными мышами и мышами дикого типа не обнаружено. Несмотря на соответствующие изменения в метаболитах катехоламинов, концентрации серотонина и дофамина значительно не различались между группами мышей с нокаутом гена comt и мышей дикого типа.
Издательство
- Издательство
- НПО ДОМ ФАРМАЦИИ
- Регион
- Россия, Санкт-Петербург
- Почтовый адрес
- 188663, Ленинградская обл, Всеволожский р-н, гп Кузьмоловский, ул Заводская, д 3 к 245, ком 4/34
- Юр. адрес
- 188663, Ленинградская обл, Всеволожский р-н, гп Кузьмоловский, ул Заводская, д 3 к 245, ком 4/34
- ФИО
- Макарова Марина Николаевна (ДИРЕКТОР)
- Контактный телефон
- +7 (___) _______